
Internet Application Guide

Internet
Application

Guide

CLARION
5.5

TABLE OF CONTENTS 3

COPYRIGHT 2000 by SoftVelocity Incorporated
All rights reserved.

This publication is protected by copyright and all rights are reserved by SoftVelocity Incorporated.
It may not, in whole or part, be copied, photocopied, reproduced, translated, or reduced to any
electronic medium or machine-readable form without prior consent, in writing, from SoftVelocity
Incorporated.

This publication supports Clarion 5.5. It is possible that it may contain technical or typographical
errors. SoftVelocity Incorporated provides this publication “as is,” without warranty of any
kind, either expressed or implied.

SoftVelocity Incorporated
2769 East Atlatic Blvd.
Pompano Beach, Florida 33062
(954) 785-4555
www.softvelocity.com

Trademark Acknowledgements:
Clarion is a trademark of SoftVelocity Inc.
Microsoft Windows,Windows 95, Windows 98, Windows NT , and Windows 2000 are
registered trademarks of Microsoft Corporation.
Portions Copyright © 1994-2000 W3C ® (Massachusetts Institute of Technology, Institut National
de Recherche en Informatique et en Automatique, Keio University), All Rights Reserved.

All other products and company names are trademarks of their respective owners.

Printed in the United States of America (0900)

4 CLARION 5.5 INTERNET APPLICATION GUIDE

TABLE OF CONTENTS
INTRODUCTION 11

What is WebBuilder and Internet Connect? ... 11
Clarion Internet Technologies and the Clarion Development Environment 12
What You’ll Find in this Book .. 13
Where to Find More Information ... 14

Documentation Conventions 15
Typeface Conventions ... 15
Keyboard Conventions.. 15

Product Information 16
Registering This Product .. 16
Technical Support ... 16

PART I
——
WEBBUILDER TECHNOLOGY 17

1 - WEB-ENABLE AN EXAMPLE APPLICATION 18
Introduction 18

Starting Point .. 18

2 - WEB VS WINDOWS APPLICATIONS 27
Introduction 27

What is a Skeleton? .. 27
What is TSSCRIPT? ... 27
Dynamic vs. Static HTML ... 30
The Application Broker .. 31

3 - WEB TEMPLATES 33
Web Application Extension .. 33

Web Procedure Extension 39

Frame Procedure MDI Options 50
Application Menu ... 50
Application Toolbar .. 51

Code Templates 52
Dynamic HTML Code Template .. 52

TABLE OF CONTENTS 5

Static HTML Code Template ... 52
GetCookie Code Template .. 53
SetCookie Code Template .. 53
Cookies (Persistent Client Data) .. 54
AddServerProperty Code Template .. 55
GetServerProperty Code Template ... 55
RedirectToPage Code Template ... 56
WebGridExtension.. 56
WebHitManager .. 57
WebHitProc .. 58
WebShowHits ... 60
WebGuard Application Extension .. 61
WebGuardProc Procedure Extenstion .. 66
WebVisitor .. 68
DeleteVisitorProcess ... 70

4 - TSSCRIPT 73
Introduction 73

Skeletons ... 73
TSScript .. 76
META Tags .. 78
WebStyle Examples .. 79

5 - SKELETON GUIDE 81
Introduction 81

Where are the Skeleton files? ... 81
Summary... 111

6 - COMMON QUESTIONS AND ANSWERS 113
Introduction 113

Common Questions 113
How do I set background colors for pages in my application? 113
How can I set a default font? .. 114
How can I implement Cascading Style Sheets? ... 114
How can I have an image with text on a button? .. 115
How can I get better control over size & placement of controls? 116
How can I use meta-tags? ... 116
How can I make a pop-up window for data validation? 116

6 CLARION 5.5 INTERNET APPLICATION GUIDE

What is the difference between POST and GET and how do I change between the
two? .. 117
How can I get server variables and their values? ... 119
How can I create tooltips? .. 119
How can I launch a Clarion application from a link? ... 119
How can I add email capability to my applications? .. 120

PART II
——
INTERNET CONNECT 121

7 - TUTORIAL—MAKING A WEB APPLICATION 122
Web Application Wizard 123

Creating a hybrid Web/Windows Application ... 123
Deploying the Application .. 126
Faster is Better—Optimizing your Application .. 129
Looks are Important—Adding Graphics .. 132

8 - TUTORIAL— WEB-ENABLING AN

EXISTING APPLICATION 135
Using the Global Internet Application Extension Template 136

Porting an Application to the Web .. 136

9 - TUTORIAL— ADVANCED WEB

PROGRAMMING TECHNIQUES 141
Using Cookies 142

Embedding HTML 147

Covering the Download with a Splash Window 151

Using Partial Refresh to Update Controls 154

Restricting Access to a Procedure 156
Password Protection ... 156

Restricting Edit-In-Place 159

10 - THE INTERNET BUILDER CLASS

TEMPLATES 161
The Global Internet Application Extension Template 161

TABLE OF CONTENTS 7

Page Settings... 162
Window Settings ... 162
Help .. 163
Control .. 164
MDI .. 165
Advanced .. 166
Classes .. 167

Global Window Component Options 168
Caption ... 168
Menu ... 169
ToolBar ... 170
Client Area .. 171
Class Overrides ... 171

Internet Procedure Extension Template 172
Page Settings... 172
Window Settings ... 173
Help .. 173
Controls .. 174
MDI .. 176
Advanced .. 176

Individual Overrides for a Control 179
Display .. 179
HTML ... 180
Events ... 181
Classes .. 182

Procedure Window Component Options 183
Caption ... 183
Menu ... 184
Toolbar .. 184
Client Area .. 185

Frame Procedure MDI Options 187
Application Menu ... 187
Application Toolbar ... 187

Code Templates 189
Dynamic HTML Code Template .. 189
Static HTML Code Template ... 189
GetCookie Code Template .. 190
SetCookie Code Template .. 190

8 CLARION 5.5 INTERNET APPLICATION GUIDE

Cookies (Persistent Client Data) .. 190
AddServerProperty Code Template .. 191
GetServerProperty Code Template ... 191

11 - WEB APPLICATION DESIGN

CONSIDERATIONS 193
Bandwidth Usage Considerations 193

Use Partial Refresh whenever possible .. 193
Be frugal with controls ... 194
Use graphics sparingly ... 194
Covering the Download with a Splash Window ... 195

Cosmetic Design Considerations 198
Using Groups .. 198
Using Images .. 199

User Interface Design Considerations 200
MDI window access ... 200
Restricting Edit-In-Place .. 200
Unsupported Windows Standard Dialogs ... 201
Using Command Line Parameters .. 202
Changing the Class for an individual control ... 202
API calls ... 203

Security Considerations 204
Using Passwords ... 204
Using a Secure Socket Layer (SSL) .. 205

Using Embedded HTML 206
Using references to files in embedded HTML code ... 207

Implementing Help in your Web Application 209
Using a Base Document with Mid-Page anchors ... 209
Using individual help Documents .. 209

Windows Controls and their HTML Equivalents 211

Hand Coded Applications 214
About This Section ... 214
HelloWeb Example Program .. 214
Hand Coded Project Considerations ... 216

TABLE OF CONTENTS 9

12 - IBC LIBRARY QUICK REFERENCE 219
Classes and Their Template Generated Objects .. 220
Quick Reference ... 221

GLOSSARY 225

INDEX 229

10 CLARION 5.5 INTERNET APPLICATION GUIDE

INTRODUCTION 11

INTRODUCTION

What is WebBuilder and Internet Connect?

Clarion works together with both Internet Connect and WebBuilder to web-
enable database applications so that you can use the same application locally
(i.e., under Windows, Windows 95, Windows 98, or Windows NT) or on the
Web using any JavaScript enabled browser. Internet Connect also requires a
Java enabled browser.

This book is provided to give you an understanding of Clarion’s internet
technologies. WebBuilder is a Java-free internet development extension to
the Clarion development environment. Internet Connect requires Java
support. This allows you to create web applications in a product that you
already know about. The applications you create can be compiled to run as a
desktop Windows application or to run in an internet browser.

WebBuilder creates pure HTML pages dynamically at runtime based on the
designed application. This product includes Skeletons which can be
customized to fit the look and feel of you applications. Skeletons can be
modified without recompiling your application. Along with Skeletons,
TSSCRIPT (a scripting language) is also introduced in this product.

The goal of this manual is to get you familiar enough with some of the basics
of these two technologies in order to make good decisions about your Web
applications.

This book assumes you have completed the tutorials in the Clarion Getting
Started and Learning Clarion manuals. If you have not yet done so, we urge
you to do them before gettng started. It is helpful to understand the basic
Clarion concepts first. It is also helpful to be familiar with the way Web
browsers work. Some basic HTML knowledge is also useful. Provided as a
pdf file is a simple intoduction to the HTML language.

12 CLARION 5.5 INTERNET APPLICATION GUIDE

Clarion Internet Technologies and the Clarion Development Environment

Automatic application developer for Windows or Web

When you just need a “simple” application to maintain a database, you can
literally do the job in minutes using Clarion. The key is the database
dictionary. If the Application Generator knows what files or tables you want
in the application and how they’re related, it can build an application. So all
you need to do is select one or more files then indicate (when there are two
or more files) whether the files have a one to many relationship or a many to
one relationship.

The Application Wizard can then create a full-featured application, and by
merely checking a box on one of the wizard’s dialogs, you can transform the
application into a Web-enabled application. The resulting application can run
locally or on the Web using the Clarion Application Broker.

Visual development environment for Windows or Web

With Clarion, dropping a control in a window gives you a lot more than other
Rapid Application Development tools. These tools typically let you add a
user interface control, but then expect you to write the code to implement its
functionality. With Clarion, you add a template, which contains the control,
data, and executable code. That means you don’t have to write code—one
CLICK places a complete business solution: a user interface control and the
code that enables it to do its job. Moreover, each template has its own user
interface. When you view the properties for the template, you’ll see an
“Actions” tab. By checking a box, choosing a dropdown list item, or filling in
an edit box, you can customize the behavior of the template so that it meets
your needs exactly. You’ll set “Actions” for the templates at many places in
the longer tutorial in this book.

When you use the template interface to specify these behaviors, the
Application Generator writes the code (Clarion language source code) that
implements the behavior for you. Using the templates, you can do an awful
lot of custom programming without writing a single line of source code.

This paradigm extends to the web implementation of your application. All of
the underlying functionality is transformed to represent your application
inside a browser. Concurrency checking and referential integrity are
automatic in your application and are enforced over the web in a similar
manner. Additional Internet Options allow you to control event handling so
that you can specify the conditions under which an event is processed on the
server.

INTRODUCTION 13

What You’ll Find in this Book

The following lists the chapters of this book and summarizes its content:

Part I—WebBuilder

Making a Web-enabled application
Chapter One: This chapter covers how to web-enable an
application. It leads you through the process step by step. Some
deployment steps are also covered so you can test your web-
enabled applications.

Differences between Web and Windows applications
Chapter Two: This chapter discusses the placement of controls in a
Windows application. It also covers the difference in static vs.
dynamic HTML. This chapter also introduces you to skeletons and
what they are.

Web Template Guide
Chapter Three: This chapter documents the Web templates.

TSSCRIPT
Chapter Four: This chapter introduces TSSCRIPT, the scripting
language that is used to create runtime HTML pages.

Skeleton Guide
Chapter Five: This chapter provides a reference to the skeleton
files. It explains each skeleton and it’s purpose.

Common Questions
Chapter Six: This is the chapter where everything comes together.
These questions have been gathered from several sources including
the newsgroups. A solution is provided with each question.

Part II—WebBuilder

Application Wizard Tutorial
Chapter Seven: A few quick steps with the Application Wizard
allow you create to a complete web application in five minutes.

Web-enabling an Existing Application
Chapter Eight: Using the IBC templates to port Clarion
applications to the Web.

Advanced Web Programming Techniques
Chapter Nine: Introduces the customization capabilities offered by
the IBC templates. It walks you through modifying your
application for optimal performance and functionality on the web.

Using the Internet Builder Class (IBC) Templates
Chapter Ten: A reference to the IBC Template interface.

Application Design Considerations
Chapter Eleven: Tips and techniques on web-based application
design.

14 CLARION 5.5 INTERNET APPLICATION GUIDE

Internet Builder Class Library- A Quick Reference
Chapter Twelve: A quick guide to the template implementation of
the objects in the Internet Builder Class (IBC) Library. This
chapter lists properties and methods commonly used in web-based
applications.

Glossary
Glossary of terms

The PDF versions of all manuals are indexed to allow fast searches across all
manuals (requires Acrobat Reader with Search).

Where to Find More Information

The Application Broker manual is the guide to installing, configuring, and
using the Clarion Application Broker.

The PDF versions of the manuals are indexed to allow fast searches across
all manuals (requires Acrobat Reader 3.x with Search; the installation
program is on the CD).

Important: if any part of the online help text conflicts with the printed
documentation, the information in online help should take precedence.
SoftVelocity makes every reasonable effort to ensure the printed
documentation is up to date. However, the lead-time required by printers
may create a lag in the documentation; while we can update the online files
that ship concurrently with a product revision, printed materials must “catch
up” later.

INTRODUCTION 15

Documentation Conventions

Typeface Conventions

Italics Indicates what to type at the keyboard, such as Enter
This.

SMALL CAPS Indicates keystrokes to enter at the keyboard, such
as ENTER or ESCAPE, or to CLICK the mouse.

Boldface Indicates commands or options from a pulldown
menu or text in a dialog window. Note: this style
also utilizes a different typeface to match the
helvetica bold face which Windows uses as the
system font.

LETTER GOTHIC Used for diagrams, source code listings, to annotate
examples, and for examples of the usage of source
statements.

Keyboard Conventions

F1 Indicates a single keystroke. In this case, press and
release the F1 key.

ALT+X Indicates a combination of keystrokes. In this case,
hold down the ALT key and press the X key, then
release both keys.

16 CLARION 5.5 INTERNET APPLICATION GUIDE

Product Information

Registering This Product

Before you begin using your Clarion internet product, be sure to fill out and
mail in the registration card that came in the package. This Business Reply
Card makes you eligible to receive several important benefits. Once
registered, you can use SoftVelocity’s Technical Support services and you
automatically receive new product announcements and update alerts.

Technical Support

Help can be obtained from several different online newsgroups. Our web
site, www.softvelocity.com, details the available technical support plans.

Usenet Newsgroup--comp.lang.clarion

You can participate in the Clarion Usenet Newsgroup on the Internet--
comp.lang.clarion. In this newsgroup, Clarion programmers from around the
world exchange ideas and techniques. Log into your News Server and
subscribe to comp.lang.clarion. If your news server does not carry the feed,
you should contact your Internet provider.

SoftVelocity's product newsgroups

SoftVelocity's internal newsserver offers newsgroups for all SoftVelocity
products. To subscribe to these groups use news.softvelocity.com as the
news server. There are several newsgroups you can subscribe to on this
server.

SoftVelocity's Web Site:

You can find other Clarion resources on the Internet by visiting
SoftVelocity's site on the World Wide Web:

http://www.softvelocity.com

Paid Technical Support

Paid telephone technical support is available. Refer to the SoftVelocity web
site for the most up to date information on the available technical support
plans.

CHAPTER 1 EXAMPLE APPLICATION 17

PART I
——

WEBBUILDER TECHNOLOGY

18 CLARION 5.5 INTERNET APPLICATION GUIDE

1 - WEB-ENABLE AN EXAMPLE APPLICATION

Introduction
This chapter goes through an example web-enabled application like an
annotated example.

It covers the templates used, which settings were used and why. It also
covers running the application and what you should be seeing when you do.

Upon running the application, some areas may not look right. How does one
fix them? This part covers the skeletons, how to change themes and walks
through a small skeleton to show what it does. We will also look at the
generated HTML code in your internet browser while the application is
running.

Starting Point

Start Clarion. Open the example Web application, located in the
\C55\Examples\Web\Webex. Your desktop should look like this:

The first stop is the Global button. This is the place to set all the defaults for
the application. You will see the Web Application Extension highlighted.
This extension is required for all web applications.

CHAPTER 1 EXAMPLE APPLICATION 19

This is the dialog where global extension templates are added to the
application. As shipped, there are 3 themes for your Web applications, the
default is used here.

Note: Detailed information about the template dialogs is in the Web
Template chapter.

Select the Advanced tab.

This dialog show the time out value. The timeout value means if there is no
activity (like a keystroke) detected in the specified number of seconds, the

20 CLARION 5.5 INTERNET APPLICATION GUIDE

application will automatically terminate. Depending on your use, you may
adjust this setting to a higher or lower value.

Press the OK button until you return to the application tree. If you add this
global extension to an existing application, it causes a procedure extension
template to be added to every procedure in your application, with the
defaults.

Highlight the Main procedure. On the right hand of the Clarion desktop,
expand the Extension tree, if it is collapsed. You do this by CLICKING on the
plus sign. You will see a Web Procedure Extension template entry. RIGHT-
CLICK on it and then choose Properties from the popup menu. You should see
this dialog:

This dialog, the Web Procedure Extension, is similar to the global Web
Application Extension. There are some template prompts that allow your
application to have desktop specific vs. Web specific functionality.

If you recall, Clarion builds a default menu for you. Some of these menus
should never be seen by a Web application. Choose the Controls tab.

CHAPTER 1 EXAMPLE APPLICATION 21

You can see that some of the controls are changed from the defaults (which
is to include everything from a desktop application). Press the Properties
button for the first item in this list, ?FileMenu. The following dialog appears:

The check box, Hide if launched from browser means that when this application is
launched as a Web application, the menu is hidden. It is visible if run as a
desktop application.

This is used because the normal File menu is not applicable when running in a
browser. There are other menu items that have also been changed. If you
look closer, you see the menus are not changed. This is not needed as hiding
a menu will hide all items in it. The other menus that should be hidden are
the Edit menu (where you normally find Cut, Copy, Paste, etc) and the Window
menu (where you find the Tile, Cascade, and list of open windows, etc).

Press the OK button until you are back at the application tree.

22 CLARION 5.5 INTERNET APPLICATION GUIDE

Select the Splash procedure at the bottom of the tree. Open the Web
Procedure Extension template like you did previously. Choose the Controls
tab. Press the Properties button for ?String2, then choose the HTML tab. You
will see this dialog:

This is where you can add static HTML code before and after the control. In
this case, center the text, change to MS Sans Serif font with the bold
attribute. The after control text box are the required ending HTML tags. If
the end tags were not entered here, then every control appearing afterwards
will inherit these changes. This is usually not the desired effect.

The other changed controls are the same. Press the OK or Cancel button to
return to the application tree.

Select the BrowseCustomers procedure and open its Web Procedure
Extension template. Choose the Controls tab. Scroll down until you see
?Browse:1 (Changed).

CHAPTER 1 EXAMPLE APPLICATION 23

Open its properties and choose the Events tab. You will see this dialog:

This is a powerful feature for Web apps. When any column in a listbox
changes, the page is refreshed. This means that the listbox will always
display the correct values in the browser. Close the dialog and look at the
other changed controls. They also have this box checked. This is because of
the strings on the window of the procedure.

Close all dialogs until you come back to the application tree. Now let’s look
at a way of embedding HTML code in embed points.

RIGHT-CLICK on the BrowseCustomers procedure and choose Embeds. Press the
Show Filled Only and Expand Filled buttons on the embed toolbar. You should see
something similar to this:

24 CLARION 5.5 INTERNET APPLICATION GUIDE

The two Internet only embed points are clearly visible. The first embed,
Internet - after the opening <BODY> tag has this code in it:

! center table and make it 600 pixels
TARGET.Writeln('<div align="center"><center>')
TARGET.Writeln('<Table width="600"><TR><TD>')

Writeln is a method that sends text into an open document. What is
happening here is that we want the list box centered in the browser and with
a restricted width so it looks like the desktop version. This embed is not
required for the functioning of the application, but it clearly looks better.

The next embed, Internet - before the closing </BODY> tag has this source:

! closing tags
TARGET.Writeln('</td></tr></Table>')
TARGET.Writeln('</center></div>')

Since the tags in the first embeds require closing tags, the same technique is
used to insert them into the HTML generated page, at the proper point.

Press the OK or Cancel buttons until you return to the application tree.

You can also see these embeds on the right hand side of the application
desktop (this is the simple view):

CHAPTER 1 EXAMPLE APPLICATION 25

Note: To change to the complex view, see Setup➤➤➤➤➤ Application
options, Application Tree tab.

Feel free to look at other procedures and their settings. The Invoice
application is designed to run with the linked-in application broker (the app
runs in the default browser).

When you are running the application, do some order edits and see how it
acts in a browser. The areas covered here should now be obvious in their
effects.

These areas are not the only way to accomplish the desired effect. There are
many other ways. The rest of this book covers some alternate methods. As
you may have come to expect from using Clarion tools, there is seldom a
single correct way to do a task!

26 CLARION 5.5 INTERNET APPLICATION GUIDE

CHAPTER 2 WEB VS WINDOWS APPLICATIONS 27

2 - WWWWWEBEBEBEBEB VSVSVSVSVS W W W W WINDOINDOINDOINDOINDOWSWSWSWSWS APPLICAPPLICAPPLICAPPLICAPPLICAAAAATIONSTIONSTIONSTIONSTIONS

Introduction
This chapter asks and answers some basic questions as well as introduces the
concept of skeletons, the scripting language used in the skeletons and how
you could use it.

Also, how does one use HTML in Clarion applications? Must one use the
skeletons? What is the role of skeletons and what is TSSCRIPT? How does
the broker fit in?

What is a Skeleton?

Simply put, a skeleton is an HTML file with a scripting language embedded
in them. The role of these scripts is to take the window controls and their
attributes and dynamically merge them with the skeleton to generate the
correct and functioning HTML code at runtime.

What is TSSCRIPT?

TSSCRIPT is the scripting language used in the skeletons. The scripts
themselves are useful, but in the traditional Clarion style, there are
underlying objects with template interfaces.

Here is an example. Suppose you want to use a column in a table that stores
a customer’s email address? You can take advantage of TSSCRIPT to
accomplish this. First, here is the interesting bits from the email skeleton
(hotstring.htm):

<meta name="ts-control" content="sstring">
<meta name="ts-capabilities" content="email">
</head>
<BODY>
<!-- HotString.htm -- Start -->

Notice the ts-capabilites and the content. Now, lets inspect the template
dialog for a individual control override:

28 CLARION 5.5 INTERNET APPLICATION GUIDE

There is a template prompt and a value to set in order to apply this to a
control. You should also notice that the ts-control defines the content of the
email control to be a STRING (the type of string is unimportant).

Simply place the string control on a window (like a browse procedure).
When you run the application in a browser, it will look like this:

And if you click on the link, your default email client is launched:

CHAPTER 2 WEB VS WINDOWS APPLICATIONS 29

The generated HTML looks like this:

<!-- HotString.htm -- Start -->
 info@ATT.com

This is one way to make a very simple change via the templates, with no
embedded code to get the desired feature.

So where do the skeletons come in? The skeletons are covered in detail in a
later chapter, but here is how this works. We’ll start where we left off in the
skeleton:

<!-- HotString.htm -- Start -->
<TSSCRIPT tag=a attr=href replace=NAME value=Contents>

 <TSSCRIPT value=Contents>
 </TSSCRIPT>

</TSSCRIPT>

Compare the above with what was generated at runtime. You can start to see
how TSSCRIPT works. The first line is says that it needs an anchor tag (that
is the tag=a attribute), and the anchor tag has an attribute of HREF. It also
declares the replace variable, called NAME and a value variable called
CONENTS.

The next line is psuedo-HTML code for an email anchor. The actual
replacing is done in the next TSSCRIPT line, where it parses the whatever
the value of the Contents is. The rest of the lines are the required end tags.

So you have the correct anchor tag for the email generated as shown above.

30 CLARION 5.5 INTERNET APPLICATION GUIDE

Dynamic vs. Static HTML

You can use either one you feel fits the need, but best results can be achieved
when you use both.

What if you have a column in one of your tables that stores a customer’s
email address (as long as we are on this theme), and you want to display this
email address as you scroll through the rows on your browse list. But even
better, suppose as you scroll through your list, you can simply click on the
displayed string to start your email client.

You have a local string variable called DisplayString and it is somewhere on
your browse window (not in the list itself). You would want this populated
with a “friendly name”, like “Joe Q. Smith”. However, you want this to
appear as a link and if you click on it, an email is started.

The local variable, DisplayString is populated everytime a new selection in
the list is made. In other words, as you scroll up and down the list.the
SetQueueRecord embed is used. You could code something like this:

DisplayString = 'Reply to ' & CLIP(CUS:FirstName) & CUS:LastName

This ensures the string has the proper data visible. However, what we want is
to make an email anchor. This is done with HTML code, but some of this
needs to be dynamic, like the email address of the person we are sending
email to.

In this case, you can use the DynamicHTML code template. You want to put
it before the control of ?DisplayString. There is an embed for that (as well as
all controls populated on a window).

The Dynamic HTML code template looks like this:

You could enter the following into this template:

'<'

Tip: Pressing the ellipsis button will open the variable selection
dialog. The use of this lookup is not required.

The next step is to add static HTML code as you will need some code that
will never change. This is ideal for end tags. Simply find the Internet embed
after generating HTML for the control.

CHAPTER 2 WEB VS WINDOWS APPLICATIONS 31

Again, you can use a code template, in this case the StaticHTML code
template. Just enter the HTML code you wish to insert after the control.

When you are done, your embed tree will look similar to this:

Now you have your link. There are other possiblities you can use with these
templates and skeletons.

The Application Broker

There are two forms of the Application Broker. The linked in (executable)
broker is used for testing your web developed application. This is
automagically linked in when you compile and run an application with the
Web templates.

For more details about the Application Broker and various deployment steps,
see the Application Broker manual. What is the Applicaiton Broker? What
does it do?

32 CLARION 5.5 INTERNET APPLICATION GUIDE

Examine the following diagram:

This shows that the broker gets its data from two sources, the Clarion
application and the skeletons. It then passes data (HTML pages) to a browser
so the user can interact with the program.

CHAPTER 3 WEB TEMPLATES 33

3 - WEB TEMPLATES

Web Application Extension

The Web Application Extension is a global template that Web-enables a
Clarion application. It adds the functionality of generating dynamic HTML
when the application is accessed through the Application Broker. This
template allows you to specify the options to use when generating an HTML
representation of your windows and reports.

In addition, it automatically adds the Web Procedure Extension to every
existing procedure in your application and any procedures subsequently
added to the application. The Web Procedure Extension allows you to
override many of the global options for a specific procedure.

This template allows you to customize the global appearance and behavior of
your application when it is executed over the Web. The settings you specify
here are global in nature; that is, they affect every procedure in your
application.

You can override most of these settings on a procedure level using the Web
Procedure Extension’s settings. In addition, some options can be specified on
a control-by-control basis. The combination of these three levels of
customization provides you with complete flexibility of design.

Window Settings

Skeletons are a collection of HTML files that contain all the information
needed to control the construction of the delivered HTML pages. These files
consist of true HTML code along with the TSSCRIPT scripting language.

34 CLARION 5.5 INTERNET APPLICATION GUIDE

The Window tab allows the global setting of the skeleton to be used for the
basic window design of your application’s windows.

Theme
Skeleton files can be categorized into common themes or styles
so all window representations in a theme have a common look
and feel. Specify the default window theme here.

Window Skeleton to use
Specifies the default window skeleton to use. This is normally a
modified version of WINDOW.HTM skeleton from the supplied
skeleton files.

Extra capabilities
Specifies extra capabilities of one skeleton versus another. The
capability is specified here.

MDI Settings

This section determines the manner in which Application Menus and
Toolbars are handled.

CHAPTER 3 WEB TEMPLATES 35

Tip: For control over specific Menu or Toolbar items, set the MDI
overrides in the Frame Procedure’s Internet Options.

Frame Menu

This section determines the manner in which Application Menus are
handled. This allows you to specify which global menu options are displayed
on “child” windows.

Include on Child Windows
Select an option from the drop-down list. The choices are:

All Menu Items All menu choices appear on child
windows.

No Menu Items No menu choices appear on child
windows.

Ignore code in frame’s ACCEPT loop
Check this box to ignore any code in the Application Frame’s
ACCEPT loop for menu items. If not checked, any embedded
code implemented in the Frame’s ACCEPT loop is automatically
implemented in the child procedure.

Frame Toolbar

This section determines the manner in which Application Toolbar controls
are handled. This allows you to specify which global Toolbar controls are
displayed on “child” windows.

Include on Child Windows
Select an option from the drop-down list. The choices are:

36 CLARION 5.5 INTERNET APPLICATION GUIDE

All Toolbar Items
All Toolbar items appear on child windows.

Standard Toolbar Only
Only the Standard Toolbar items appear on child
windows. These are the buttons added by the
FrameBrowseControl template.

No Toolbar Items
No Toolbar items appear on child windows.

Ignore code in frame’s ACCEPT loop
Check this box to ignore any code in the Application Frame’s
ACCEPT loop for toolbar items. If not checked, any embedded
code implemented in the Frame’s ACCEPT loop is automatically
implemented in the child procedure.

Advanced tab

Enable dual mode application
Check this box to allow the application to run as a true windows
application as well as an internet application using the embedded
broker.

Page to return to on exit
Optionally, specify the HTML page to return to when the
program ends. The template generated code calls the
WebServer.Init method to set the WebServer.PagetoReturnTo
property.

CHAPTER 3 WEB TEMPLATES 37

Time out (seconds)
This specifies the maximum amount of idle time (measured in
seconds) before an application closes. The default is 600 seconds
(10 minutes). The template generated code calls the
WebServer.Init method to set the WebServer.TimeOut property.

Sub directory for pages
The directory in which the application creates temporary
directories (a temporary directory is made for each active
connection) to write the dynamic HTML and graphic files. This
is also the directory in which to deploy graphic files. If you
provide a graphic in this directory, it is not extracted and written
to the temporary directory. This defaults to /PUBLIC. The
template generated code calls the WebFilesManager.Init method
to set the property. It is not appropriate to set this property at
runtime.

Sub directory for skeletons
The directory in which the application skeleton files are stored.
This defaults to SKELETON. The skeletons must be available at
runtime. Multiple directories may be specified. They are
separated by a semicolon (;). The template generated code calls
the AddSkeletonDirectory method to set the path.

Use Cookies Rather than INI File
Check this box to use cookie files instead of an INI file for
storage of data related to a web site.

Global Objects tab

The Global Objects tab lets you specify which classes (objects) the templates
instantiate globally in your application to accomplish various tasks, and the
source modules that contain the class definitions. This approach gives you
the capability to use as much of the WBC Library as you want and as much
of your own classes as you want.

38 CLARION 5.5 INTERNET APPLICATION GUIDE

To change the class for an item or override the class, press the button for the
class you wish to affect.

Classes tab

The Classes Tab lets you specify which classes (objects) the templates use to
accomplish various tasks, and the source modules that contain the class
definitions. This approach gives you the capability to use as much of the
WBC Library as you want and as much of your own classes as you want.

To change the class for an item or override the class, highlight it in the list,
then press the Properties button.

CHAPTER 3 WEB TEMPLATES 39

Web Procedure Extension
This template allows you to customize the appearance and behavior of a
procedure when it is executed over the Web. The settings you specify here
are local in nature, that is they affect only this procedure. To change Global
Settings: press the Global Button on the Application Generator, then press the
Extensions button, and modify the settings for the Web Application Extension.

To modify the settings, press the Internet Options button on the Procedure
Properties window.

Window Tab

Skeletons are a collection of HTML files that contain all the information
needed to control the construction of the delivered HTML pages. These files
consist of true HTML code along with the TSSCRIPT scripting language.

The Window tab allows you to override the global skeleton settings for this
procedure only. The change will not affect any other procedure.

Override Global settings
Check this box to override the Window settings in the global
Web Application Extension template. Checking this box enables
the prompts below.

Skeleton to use
Specifies the default window skeleton to use. This is normally a
modified version of WINDOW.HTM skeleton from the supplied
skeleton files.

Theme
Skeleton files can be categorized into common themes or styles
so all window representations in a theme have a common look
and feel. Specify the default winodw theme here.

40 CLARION 5.5 INTERNET APPLICATION GUIDE

Extra capabilities
Specifies extra capabilities of one skeleton versus another. The
capability is specified here. This is referring to a TSSCRIPT
property. This is covered in more detail in Chapter Six of this
guide.

Return if launched from browser
Check this box to disable the procedure when the application is
run over the Web. This allows you to remove functionality for
the Web version of your application without removing it from
the Windows version.

Report Tab

The Report tab defines how the report title and page number will display on
the generated HTML page. By default all internet reports will contain a
toolbar at the top of the generated HTML page. This toolbar give the
following functionality:

First Page, Previous Page, Next Page, Last Page, Zoom In, Zoom Out, One
Page, Two Pages, and Exit.

The reports tab contains the following template prompts:

Previewer Window Title
Specifies the title of the report should display in the report
preview window. This title will display in the internet explorer
window title as well as at the top of the HTML page above the
report. This must be a string.

Include current page in title?
Check this box to display the current page number in the report
previewer window as well as at the top of the HTML page above
the report.

Show total Pages in title?
Check this box to display the total number of pages in the report
previewer window (next to the current page number) as well as
at the top of the HTML page above the report (next to the
current page number).

CHAPTER 3 WEB TEMPLATES 41

Controls Tab

Individual Control Options
Hightlight a control in the listbox and press the Properties button
to modify specific control options.

Display

Skeleton to use
Specifies the default window skeleton to use. This is normally a
modified version of WINDOW.HTM skeleton from the supplied
skeleton files.

Theme
Skeleton files can be categorized into common themes or styles
so all window representations in a theme have a common look
and feel. Specify the default winodw theme here.

42 CLARION 5.5 INTERNET APPLICATION GUIDE

Extra capabilities
Specifies extra capabilities of one skeleton versus another. The
capability is specified here.

Type of field
This is for fields which need special formatting such as dates,
times, and monetary pictures.

HTML

One of the most powerful features of the WBC Templates is the ability to
embed HTML code in the HTML pages which are output by the Web-
enabled application. This feature allows you to add any HTML code at
points before or after any control on the resulting Web page. This code does
not affect the application when it is running as a Windows executable.

Using Embedded HTML, you can write any HTML code supported by the
browser. You can insert your own custom JavaScript, Java applets, ActiveX
controls, Shockwave files, or other objects.

CHAPTER 3 WEB TEMPLATES 43

Events

This tab allows you to override the page submission event for a control.

Refresh when changed
Check this box to cause the page to be submitted to the server
when the value of the control changes. The press of a command
button automatically causes a page submission. Most other
controls that allow data entry do not automatically submit the
page to the browser.

This means the processing of events associated with the control is
delayed until the page is submitted to the browser. Your embedded
code would not execute at the expected time (e.g., code in the
Event:Accepted embed point for a control would not execute until
the OK button submitted the page). This option allows you to
override the page submission event.

The ability to override the default page submission event when the
application is executed in a browser allows you to optimize the
application for the Web environment and ensure that all of your
embedded code is executed at the time you expect it to.

Properties

A Property is a predefined or customized attribute that is defined in a
skeleton file. Through this dialog the skeleton’s property can be accessed and
executed. Properties serve as a way to translate information about a window
or control from the executable to the dynamically generated HTML page.

44 CLARION 5.5 INTERNET APPLICATION GUIDE

Press the Insert, Properties or Delete button to modify the properties
that the application will look for in the skeleton files.

Name of Property
Enter the name of the TSSCRIPT property defined in the
skeleton file.

Type of Property
Select the data type from the dropdown list. Select from BOOL,
Integer, String, or Reference.

Value
Enter a literal value or a valid clarion language expression.

Classes

The Classes Tab lets you specify which classes (objects) the templates use to
accomplish various tasks, and the source modules that contain the class
definitions. This approach gives you the capability to use as much of the
WBC Library as you want and as much of your own classes as you want.

CHAPTER 3 WEB TEMPLATES 45

To change the class for an item or override the class, highlight it in the list,
then press the Properties button.

MDI Tab

This section determines the manner in which Application Menus and
Toolbars are handled.

Tip: For control over specific Menu or Toolbar items, set the MDI
overrides in the Frame Procedure’s Internet Options.

Merge Frame Menu
Check this box to Merge the Frame’s Menu when running this
procedure.

Merge Frame Toolbar
Check this box to Merge the Frame’s Toolbar when running this
procedure.

46 CLARION 5.5 INTERNET APPLICATION GUIDE

For a Frame Procedure, you have additional options. See Frame Procedure
MDI Options.

Properties Tab

A Property is a predefined or customized attribute that is defined in a
skeleton file. Through this dialog the skeleton’s property can be accessed and
executed. Properties serve as a way to translate information about a window
or control from the executable to the dynamically generated HTML page.

Press the Insert, Properties or Delete button to modify the properties
that the application will look for in the skeleton files.

Name of Property
Enter the name of the TSSCRIPT property defined in the
skeleton file.

Type of Property
Select the data type from the dropdown list. Select from BOOL,
Integer, String, or Reference.

Value
Enter a literal value or a valid clarion language expression.

CHAPTER 3 WEB TEMPLATES 47

Advanced Tab

Security

Transfer over a secure connection
Check this box to transmit data using a Secure Socket Layer
(SSL). This allows secure transactions on a procedure level.
Keep in mind that encryption has a marked effect on
performance. You should only enable security for procedures
that transmit sensitive data.

Note: This feature requires installation of the secure version of the
Application Broker. See the Application Broker chapter.

Restrict Access to this procedure
Check this box to password protect the procedure and enable the
two fields below.

Password
Specify a password or select a variable from the file schematic
by pressing the ellipsis (...) button. A static password provides
simple protection.

Case Sensitive
Check this box to enforce case sensitive validation of the
password. If the box is not checked, case is ignored.

Window refresh

Show progress window
This controls the window associated with a Report or Process
procedure. It is not available for other procedure types. Check
this box to display the window associated with the Report
Procedure when running over the Web. If not checked, the
window is ignored. If the window in a Report Procedure

48 CLARION 5.5 INTERNET APPLICATION GUIDE

contains a Pause Button control template, the box is checked and
cannot be changed. In a Process procedure, the box is checked
and cannot be changed. This makes sure the window displays.

Time between refresh
Specify the number of seconds between each refresh.

Action on Timer
Specify the action to perform when the timer event is reached.
The choices are:

Partial Page refresh
Redisplays Java controls and HTML entry controls
to reflect current data.

Submit page Sends data to server application and redraws page
as instructed by the server application

Complete Page refresh
Redraws the entire page.

Enable Refresh on timer
Check this box to refresh the entire page or only the page data
based on a timer. A TIMER attribute on a WINDOW is
independant of this setting. This setting is used on the Web and
the TIMER attribute is used when the application runs under
Windows.

Tip: This feature should be used sparingly to ensure minimal
network traffic.

Time between refresh
Specify the number of seconds between each refresh.

Action on Timer
Specify the action to perform when the timer event is reached.
The choices are:

Partial Page refresh
Redisplays Java controls and HTML entry controls
to reflect current data.

Submit page Sends data to server application and redraws page
as instructed by the server application

Complete Page refresh
Redraws the entire page.

CHAPTER 3 WEB TEMPLATES 49

Classes Tab

The Classes Tab lets you specify which classes (objects) the templates use to
accomplish various tasks, and the source modules that contain the class
definitions. This approach gives you the capability to use as much of the
WBC Library as you want and as much of your own classes as you want.

To change the class for an item or override the class, highlight it in the list,
then press the Properties button.

50 CLARION 5.5 INTERNET APPLICATION GUIDE

Frame Procedure MDI Options

Application Menu

Override Global settings
Check this box to override the Menu MDI settings in the global
Web Application Extension template. Checking this box enables
the other prompts.

Include on Child Windows
Select the option from the drop-down list. The choices are:

Global Setting
Menu choices appear on child windows as specified
in the Global options.

All Menu Items
All menu choices appear on child windows.

No Menu Items
No menu choices appear on child windows.

Selected Menu Items
Allows you to select individual menu options from
the list below.

Ignore frame code
Check this box to ignore any embedded code in the Application
Frame’s ACCEPT loop for menu items.

CHAPTER 3 WEB TEMPLATES 51

Application Toolbar

This section determines the manner in which Application Toolbar controls
are handled. This allows you to specify which global Toolbar controls are
displayed on “child” windows.

Override Global settings
Check this box to override the Toolbar MDI settings in the
global Web Application Extension template. Checking this box
enables the other prompts.

Include on Child Windows
Select the option from the drop-down list. The choices are:

Global Setting
Toolbar controls appear on child windows as
specified in the Global options.

All Toolbar Items
All Toolbar items appear on child windows.

Standard Toolbar Only
Only the Standard Toolbar items appear on child
windows.

No Toolbar Items
No Toolbar items appear on child windows.

Selected Toolbar Items
Allows you to select individual Toolbar items from
the list below.

Ignore frame code
Check this box to ignore any embedded code in the Application
Frame’s ACCEPT loop for toolbar items.

52 CLARION 5.5 INTERNET APPLICATION GUIDE

Code Templates

Dynamic HTML Code Template

This code template allows you to insert dynamic HTML code in any of the
Internet embed points. This template is only available for Embed points that
can write to the delivered HTML page at runtime.

You can specify any valid Clarion expression in the entry box. Any variables
used in the expression will use the current value at the time the HTML code
is written.

Note: When creating your expression to write HTML code, you must
handle special characters, such as <, by using two characters
in succession.

This template uses the Target.WriteLn method to write the value of the
expression to the delivered HTML page.

See also: Embedding HTML

Static HTML Code Template

This code template allows you to insert static HTML code in any of the
Internet embed points. This template is only available for Embed points that
can write to the delivered HTML page at runtime.

You can specify any valid HTML code in the entry box.

This template uses the Target.WriteLn method to write the HTML code to
the delivered HTML page.

CHAPTER 3 WEB TEMPLATES 53

Note: If you use the Static HTML Code Template, special characters
are handled automatically.

GetCookie Code Template

This template allows you to retrieve a cookie from the client’s machine.

Cookie Name
Provide a name for the cookie. This is the name used in the
SetCookie Code template to write the cookie. If the cookie does
not exist, a null value is assigned to the Variable to Set.

Variable to Set
Select a variable from the file schematic by pressing the ellipsis
(...) button. The value of the cookie is assigned to the variable.

See also: SetCookie Code Template, Cookies (Persistent Client Data)

SetCookie Code Template

This template allows you to set a cookie on the client’s machine for later
retrieval.

Cookie Name
Provide a name for the cookie. This is the name to use in the
GetCookie Code template to retrieve the cookie. If a cookie of
the same name exists, it is overwritten.

New Value
Specify a value or select a variable from the file schematic by
pressing the ellipsis (...) button. This value is assigned to the
cookie.

See also: GetCookie Code Template, Cookies (Persistent Client Data)

54 CLARION 5.5 INTERNET APPLICATION GUIDE

Cookies (Persistent Client Data)

Cookies are a method for Web servers to both store and retrieve information
on the client side of the connection. This allows a server to store data on the
client’s machine and retrieve it later.

A server can send a piece of data to the client (browser) which the client
stores locally. This is known as a cookie (the name has no known origin).
Cookies contain a range of URLs for which it is valid.

Later, when the client returns to a URL within that range, the server can
query the cookie and use that data. A server cannot retrieve information from
other servers (i.e., a server cannot query a cookie that is out of its domain
range).

This mechanism is similar to the INI file storage and retrieval paradigm in
Windows (GETINI and PUTINI) and provides a method for identifying user
preferences, and other data.

For example, an application that requires a user to provide their name before
entering can use a cookie to avoid the Login process after the first visit.

Note: Cookies are machine specific so a client who accesses a site
from more than one machine will need to provide the cookie
information once for each machine so a cookie is stored on
the machine. In addition, cookies are browser specific, so a
client who uses more than one browser, will need to set and
get cookies for each browser.

Your Web-enabled applications can use cookies to store user preferences
such as the default city and state for new records. These settings can be
retrieved the next time the user runs the application over the Web.

See also: GetCookie Code Template, SetCookie Code Template

CHAPTER 3 WEB TEMPLATES 55

AddServerProperty Code Template

This template allows you to set the value of the specified outgoing http item
in the HTTP header.

Property Name
Provide the property name to set.

Property Value
Select a variable from the file schematic by pressing the ellipsis
(...) button. The value of the variable is assigned to the property.

See Also : GetServerProperty Code Template

GetServerProperty Code Template

This template allows you to get the value of the specified http item in the
HTTP header.

Property Name
Provide a name for the HTTP property. If the HTTP field does
not exist, a null value is assigned to the Variable to Set.

Variable to Set
Select a variable from the file schematic by pressing the ellipsis
(...) button. The value of the property is assigned to the variable.

See Also : SetServerProperty Code Template

56 CLARION 5.5 INTERNET APPLICATION GUIDE

RedirectToPage Code Template

This template redirects the browser to the designated URL. At the present
time, the running program is left running. The program must be terminated
or left to time out.

Page to redirect to
Specifies the URL of the page the browser it redirected to. An
absolute or relative URL may be specified.

WebGridExtension

All BrowseBoxes that use the ABC’s BrowseGrid control template must use
this template for Web applications.

This template requires the use of the ABC BrowseGrid extension.

1. RIGHT-CLICK on the procedure and choose Extensions from the popup
menu.

2. Within the list of existing extensions, highlight Cause Browse to act as
grid.

3. Press the INSERT button and select the WebGridExtension extension.

This template has no prompts.

For further information about using the browse grid interface, see the
BrowseGrid template documentation which can be found in the Template
Guide.

CHAPTER 3 WEB TEMPLATES 57

WebHitManager

The WebHitManager extension template provides the ability to record the
number of accesses (hits) to an application or certain procedures within the
application. Hit counts can be tied to a particular window activity or control
event. This extension template is added to the global extension of the
application file and allows the Hit Managers global options to be set.

This extension template requires the WebApplicationExtension.

Populating the Template

1. Press the Global button from the IDE.

2. Press the Extensions button.

3. Highlight the WebApplicationExtension template.

4. Press the INSERT button and select the WebHitManager extension.

The WebHitManager template provides the following prompts:

Hit Manager Options

Hits Data File
Specify the log file that is used to store the WebHit counts. If no
path is specified, the file is created in the Windows directory.

File Update Threshold
Specifies the number of hits to occur before the counts are
written to the Hits Data File. The counts are written when the
program is terminated, regardless of the threshold specified.

58 CLARION 5.5 INTERNET APPLICATION GUIDE

Global Objects

The Global Objects tab lets you specify the default object names for the
objects used by the ABC Templates. You can also specify the default classes
to be used for the global objects.

Classes

The classes tab lets you control the class (and object) the template uses. You
may accept the default Application Builder Class and it’s object
(recommended) or you may specify your own or a third party class. Deriving
your own class can give you very fine control over the procedure when the
standard Application Builder Class is not precisely what you need.

See Template Overview – Classes Tab Options – Local for complete
information on these options.

WebHitProc

The WebHitProc extension template provides the ability to record the
number of accesses (hits) to an application or certain procedures within the
application. Hit counts can be tied to a particular window activity or control
event. This extension template is added to any procedure that will record the
hits tied to the procedure at the procedure entry level, window event level or
control event level. This extension requires the application to have the global
WebHitManager extension.

This extension template requires the WebHitManger global extension.

Populating the Template

1. RIGHT-CLICK on the procedure and choose Extensions from the popup menu.

2. Press the INSERT button and select the WebHitProc extension.

CHAPTER 3 WEB TEMPLATES 59

Template Prompts

The WebHitProc template provides the following prompts:

Procedure Hit Count Options

Procedure Instance Id
Specifies the id of the hit instance recorded in the log file. This
id is used to read and write the hit count to the log file. By
default this is the name of the procedure.

Procedure Entry Tag
Specifies text to describe the procedure action that is counted.
This text is written to the log file. By default this is set to
Entered.

Control Tags
Provides a listbox in order to define one or more control specific
hit counts.

Link Tag
Specifies text to describe the window or control event that is counted.
This text is written to the log file following the Procedure Instance Id.

Trigger Control
Select a control from the drop down listbox. This will trigger the hit
count to be incremented when the control is handled and the Trigger
Event occurs. To trigger a hit count on a window event, leave the Trigger
Control blank.

Trigger Event
Select an event from the drop down listbox. This will trigger the hit
count to be incremented when the event occurs. If a control is specified
as the Trigger Control, the event is based on the control. If no control is
specified, the event is based on the window.

Classes

The classes tab lets you control the class (and object) the template uses. You
may accept the default Application Builder Class and it’s object
(recommended) or you may specify your own or a third party class. Deriving

60 CLARION 5.5 INTERNET APPLICATION GUIDE

your own class can give you very fine control over the procedure when the
standard Application Builder Class is not precisely what you need.

See Template Overview – Classes Tab Options – Local for complete
information on these options.

WebShowHits

The WebShowHits extension provides the ability to display a hit count. This
extension requires the application to have the WebHitProc extension.

This extension template requires the WebHitProc extension.

Populating the Template

1. RIGHT-CLICK on the procedure and choose Extensions from the popup menu.

2. Press the INSERT button and select the WebShowHits extension.

Template Prompts

The WebShowHits template provides the following prompts:

Count Tag
Specifies the tag defined in the WebHitsProc extension for a
Procedure Entry Tag or Control Link Tag. This tag is used to
retrieve and display an up to date count. This tag is case
sensitive.

Assignment Type
Select Text Property or Variable from the drop down listbox.
This assigns the specified control or variable the value of the
count for display.

Control to Receive Link
Specify the window control that will display the hit count. This
is enabled only when Text Property is selected as the Assignment
Type.

Variable to Receive Link
Specify the variable that will display the hit count. This is
enabled only when Variable is selected as the Assignment Type.

CHAPTER 3 WEB TEMPLATES 61

WebGuard Application Extension

The WebGuard Application extension template provides an easy way to limit
access to applications at the application and/or procedure level. The template
provides a default logon window (this window may be overridden) used for
logging in to an application and provides the ability to add a new user to the
application.

WebGuard supports the ability to define specific capabilities (rights) to each
user. These capabilities are used by the WebGuardProc procedure extension
template to validate the users rights to the requested information. WebGuard
has the ability to work in conjunction with the GlobalDocumentHandling
extension (Internet Toolkit). By combining these templates the ability to
email a user about invalid logins to their account is enabled.

The minimum requirement of keys and columns needed to use the WebGuard
extension is defined below. The column names can be anything; they do not
have to match the definition. The purpose of the keys and columns are the
important issue.

Required:

CUSTOMER FILE
NameKey KEY, Unique, Contains Name column
Name FIELD, must be a STRING, CSTRING, or PSTRING
Password FIELD, must be a STRING, CSTRING, or PSTRING
Capability FIELD, must be a STRING, CSTRING, or PSTRING
Number FIELD

Optional: The following fields are required only when enabling their
corresponding options.

CountFailure FIELD
DaysToLock FIELD
MaxLogonAttempts FIELD
AccountLocking FIELD
LockedUntil FIELD

This extension template requires the global WebBuilder template.

Populating the Template

1. Press the Global button from the IDE.

2. Press the Extensions button.

3. Highlight the WebApplicationExtension extension template.

4. Press the INSERT button and select the WebGuard extension.

62 CLARION 5.5 INTERNET APPLICATION GUIDE

The WebGuard template provides the following prompts:

Guard Data File

User Information Data File
Select the file to be used as the customer (Customer) file. Use
the ellipsis (…) to select the file from the file schematic or type
in a file that exists in the file schematic.

File Access Key
Select the key that is made up of the customer name field. This
key is used to retrieve a specific customer record from the
Customer file. The key should be a unique key. Use the ellipsis
(…) to select the key from the customer file or type in a key that
exists in the file.

Name Field
Select the field to be used as the customer name field. This field
specifies the customer name and must be defined as a STRING,
CSTRING, or PSTRING. The customer name field must be the
primary field in the File Access Key. Use the ellipsis (…) to
select the field from the customer file or type in a field that exists
in the file.

Password Field
Select the field to be used as the customer password field. This
field will contain the customer’s defined password and must be
defined as a STRING, CSTRING, or PSTRING. Use the ellipsis
(…) to select the field from the customer file or type in a field
that exists in the file.

CHAPTER 3 WEB TEMPLATES 63

Capability Field
Select the field to be used to validate customer capabilities. This
field must be defined as a STRING, CSTRING, or PSTRING.
Use the ellipsis (…) to select the field from the customer file or
type in a field that exists in the file. Capabilities define the
specific abilities available to a customer. For example, there may
be several types of customers that have different rights in the
system. There may be a PRIORITY customer and a
STANDARD customer. If a PRIORITY customer logs into the
system they will potentially see different menu choices than the
STANDARD customer.

Customer Number Field
Select the field to be used as the customer number field. This
field will contain the customer id used to identify a customer.
Use the ellipsis (…) to select the field from the customer file or
type in a field that exists in the file. This field should exist as
part of a autoincrementing key so new users will have
incremented customer numbers.

Count Failure Field
Select the field to be used as a count field. This field is
incremented when an invalid logon occurs. When the invalid
count exceeds the Maximum Logon Attempts, the customer
account can be locked either for the specified number of days or
until a specified date. Use the ellipsis (…) to select the field
from the customer file or type in a field that exists in the file.

Account Locking Field
Select the field to be used as the lock status field. This field is set
when the Maximum Logon Attempts is reached. Use the ellipsis
(…) to select the field from the customer file or type in a field
that exists in the file.

Locked Until Field
Select the field to be used to specify the date the customer
account will be unlocked. This field is set when the Maximum
Logon Attempts is reached. It is set to the current date plus the
number specified in the Days To Lock template prompt. Use the
ellipsis (…) to select the field from the customer file or type in a
field that exists in the file.

64 CLARION 5.5 INTERNET APPLICATION GUIDE

Guard Options

Enable Application Security
Check this box to enable the WebGuard application extension for
an application. By default this box is checked. When this box is
unchecked, all WebGuard prompts are disabled.

Web Enable
Check this box to enable WebGuard login windows to work in a
web application. By default this box is checked.

Force Logon When Program Starts
Check this box to have a logon window appear at the start of the
application. By default this box is unchecked.

Days To Lock
Specify the number of days a customer account will be locked in
the case when the Maximum Logon Attempts occur.

Maximum Logon Attempts
Specify the maximum number of invalid logon attempts. This is
available when a Count Failure field is specified. Days To Lock
and Account Locking Field must be entered in order for the
Maximum Logon Attempts to be validated.

Email Password
Check the box to have an email sent to the customer when the
maximum number of invalid logon attempts occur. See the
Global Document Handling Internet ToolKit extension to setup
email specifications.

Default Capabilities
Specifies a string, variable, or runtime expression using
EVALUATE to use as the default capability settings for all

CHAPTER 3 WEB TEMPLATES 65

customers logging in to the system. To specify a variable here,
precede the entry with an exclamation point (!). To specify a
runtime expression, precede the entry with an equal sign (=).

Default Admin Logon
Specifies a string, variable, or runtime expression using
EVALUATE to use as the default Administrator logon name. To
specify a variable here, precede the entry with an exclamation
point (!). To specify a runtime expression, precede the entry with
an equal sign (=).

Default Admin Password
Specifies a string, variable, or runtime expression using
EVALUATE to use as the default Administrator password. To
specify a variable here, precede the entry with an exclamation
point (!). To specify a runtime expression, precede the entry with
an equal sign (=).

Default Admin Capabilities
Specifies a string, variable, or runtime expression using
EVALUATE to use as the default Administrator capabilites. To
specify a variable here, precede the entry with an exclamation
point (!). To specify a runtime expression, precede the entry with
an equal sign (=).

Ignore Capabilities Case
Check this box to force the capabilities verification to be case
insensitive. The default value for this prompt is case insensitive.

Position File to Customer
This is not implemented at this time.

Allow New User Button
Select Yes, No, or Use External Procedure to have the New User
button shown on the window or not. Use External Procedure is
not implemented for Beta 2.

Default Guard Failure Actions
Define the failure actions to take when a customer does not have
the required capabilities to enter a specific area. These default
options can be overridden using the WebGuard Procedure
extenson.

When WebGuard Fails
Choose Show Message or Run a Procedure as the default failure
action. Show message displays a message to the user to inform
them about their capabilites. The message is defined in
WebGuard.trn.

Procedure Name
Choose an existing procedure from the drop down listbox or type
in a new procedure name. This procedure is executed when a
user tries to enter a procedure with invalid capabilities.

66 CLARION 5.5 INTERNET APPLICATION GUIDE

Override Logon Procedure
Check this box to override the default logon window in order to
provide a customized one.

Procedure Name
Choose an existing procedure from the drop down listbox or type
in a new procedure name. This procedure is used to replace the
default logon window and code. This procedure must return a
return value of a BYTE. The return field returns the error
severity. The severity levels can be found in ABERROR.INC.

Global Objects

The Global Objects tab lets you specify the default object names for the
objects used by the ABC Templates. You can also specify the default classes
to be used for the global objects.

Classes

The Classes tab lets you control the classes (and objects) the procedure uses.
You may accept the default Application Builder Class and its object
(recommended), or you may specify your own or a third party class.
Deriving your own class can give you very fine control over the procedure
when the standard Application Builder Class is not precisely what you need.
See Template Overview—Classes Tab Options—Local for complete
information on these options.

WebGuardProc Procedure Extenstion

The WebGuardProc procedure extension is available when the WebGuard
application extension is added globally to the application. This procedure
extension gives the ability to limit access to specific procedure based on
defined user capabilities.

This extension template requires the global WebGuard extension.

Populating the Template

1. RIGHT-CLICK on the procedure and choose Extensions from the popup menu.

2. Press the INSERT button and select the WebGuardProc extension.

CHAPTER 3 WEB TEMPLATES 67

Template Prompts

The WebGuardProc extension provides the following prompts:

Guard Procedure Entry
Check this box to validate the users capabilities (rights) to access
the procedure.

Required Entry Capability
Specify the required capability to gain access to the procedure.

When Guard Fails
Choose Default Action, Show Message or Run a Procedure as
the failure action. The failure actions define the action to take
when a customer does not have the required capabilities to enter
a specific area. Show message displays a message to the user to
inform them about their capabilites. The message is defined in
WebGuard.trn.

Procedure Name
Choose an existing procedure from the drop down listbox or type
in a new procedure name. This procedure is executed when a
user tries to enter a procedure with invalid capabilities.

Control To Guard
Specific controls can be guarded by this extension. Choose the
control to guard from the drop down listbox.

Required Control Capability
Specify the required capability to gain access to the control.

Guard Type
A control can either be hidden or trigger a failure action if the
capabilities requirement is not met. Select Hide or Trigger from
the drop down listbox.

When Guard Fails
Choose Default Action, Show Message or Run a Procedure as
the triggered failure action. The failure actions define the action
to take when a customer does not have the required capabilities
for the specified control. Show message displays a message to
the user to inform them about their capabilites. The message is
defined in WebGuard.trn.

68 CLARION 5.5 INTERNET APPLICATION GUIDE

Procedure Name
Choose an existing procedure from the drop down listbox or type
in a new procedure name. This procedure is executed when a
user tries access a control with invalid capabilities.

WebVisitor

The WebVisitor extension template is a global extension that allows an
application to have temporary users (visitors). This concept is most often
used in a shopping cart application where users can view products and use
the shopping cart prior to signing in and processing an order. The template
creates a temporary user record in the visitor file as well as the customer file.
This template requires the WebGuard global extension.

Enable Visitors
Check this box to enable Visitors for the application.

Derived Guard Class
Select the class the template will use from the drop down
listbox. You may accept the default VisitorClass (reccomended)
or you may specify your own or a third party class. Deriving
your own class can give you very fine control over the
functionality when the standard Application Builder Class is not
precisely what you need.

Visitors File
Select the file to be used as the visitor (Visitor) file. Use the
ellipsis (…) to select the file from the file schematic or type in a
file that exists in the file schematic.

CHAPTER 3 WEB TEMPLATES 69

Visitor Idx Key
Select the key to be uses as the Visitor Idx key. This key should
be an auto-incrementing key that consists of the visitor idx field.
Use the ellipsis (…) to select the field from the visitor file or
type in a field that exists in the file.

Visitor Idx Field
Select the field to be used as the visitor idx field. Use the ellipsis
(…) to select the field from the visitor file or type in a field that
exists in the file.

Visitor Customer Id Field
Select the field to be used as the customer id field. This is used
to relate the visitor record to the customer file. This is a one-to-
one relationship. Use the ellipsis (…) to select the field from the
visitor file or type in a field that exists in the file.

Visitor Date Field
Select the field to be used as the visitor date field. This is used to
keep track of the date the visitor signed on to the system and is
also used by the DeleteVisitorProcess to remove obsolete
visitors. Use the ellipsis (…) to select the field from the visitor
file or type in a field that exists in the file.

Date Field Initial Value
Specify the initial date value to be used when a record is added
to the visitor file. This may be a value, function or variable. The
default value is TODAY(). The initial value may also be set in
the initial value of the date field in the dictionary.

Cart File
Select the file to be used as the shopping cart (Cart) file. Use the
ellipsis (…) to select the file from the file schematic or type in a
file that exists in the file schematic.

Cart Customer Key
Select the key to be uses as the customer key. This key should
consist of the customer id field. It is used to relate the cart file to
the customer file. Use the ellipsis (…) to select the field from the
cart file or type in a field that exists in the file.

Cart Customer Id Field
Select the field to be used as the customer id field. This field
identifies the id of the customer who created the shopping cart. It
is used to relate the Cart file to the Customer file. The
relationship is a one-to-many relation. Use the ellipsis (…) to
select the field from the shopping cart file or type in a field that
exists in the file.

Invoice File
Select the file to be used as the invoice (Invoice) file. Use the
ellipsis (…) to select the file from the file schematic or type in a
file that exists in the file schematic.

70 CLARION 5.5 INTERNET APPLICATION GUIDE

Invoice Customer Key
Select the key to be uses as the customer key. This key should
consist of the customer id field. It is used to relate the invoice
file to the customer file. Use the ellipsis (…) to select the field
from the invoice file or type in a field that exists in the file.

Invoice Customer Id Field
Select the field to be used as the customer id field. This field is
used to relate the Invoice to a Customer. Use the ellipsis (…) to
select the field from the invoice file or type in a field that exists
in the file.

DeleteVisitorProcess

The DeleteVisitorProcess extension template will remove old non-existant
visitors from the visitor table and all related tables. This extension may only
be added to a PROCESS procedure. The following files must be in the file
schematic of the procedure in order for all related tables to be cleaned of the
obsolete visitor records.

The PROCESS procedure should have the Actions for Process set to
DELETE record. Check the Use RI constraints box. The record filter should
be set to filter out visitor records older than x number of days. To delete all
visitor records older than 7 days set the record filter to VIS:Dte < TODAY()-
7. VIS:Dte is the Visitor Date Field defined above. To delay showing the
process window, use the ExtendedProgressWindow extension.

CHAPTER 3 WEB TEMPLATES 71

Use Reservation System
Check this box use the reservation syste.

Customer ID Field
Select the field to be used as the customer id field. Use the
ellipsis (…) to select the field from the invoice file or type in a
field that exists in the file.

Reservation Number Field
Select the field to be used as the reservation number field. Use
the ellipsis (…) to select the field from the invoice line file or
type in a field that exists in the file.

Product ID Field
Select the field to be used as the invoice line product id field.
Use the ellipsis (…) to select the field from the product line file
or type in a field that exists in the file.

Quantity Field
Select the field to be used as the invoice line quantity field. Use
the ellipsis (…) to select the field from the invoice line file or
type in a field that exists in the file.

72 CLARION 5.5 INTERNET APPLICATION GUIDE

CHAPTER 4 TSCRIPT 73

4 - TSSCRIPT

Introduction
The WebBuilder extensions use a new method of constructing the HTML
representation of an application at runtime. You can still embed HTML in
your Clarion App as before, but now there are extended capabilities that can
be utilized after the app is compiled.

This also provides the ability to change an application’s look and feel after
the application is made without having to recompile the application. This
allows you to easily make your Web application look like your Web site.
When you change your Web site’s appearance, you can easily change the
application’s look to match.

The result is an application that controls business logic and data access, and
HTML files which control the presentation layer. A non-programmer (i.e.,
webmaster) can edit the HTML skeletons without the Clarion developer.

Skeletons

Clarion 5.5’s Web Builder templates use a collection of HTML files called
Skeletons. These files contain all the information needed to control
construction of the delivered HTML page. These files are stored in the
directory named in the Global Extension of your web-enabled app. The
current default is Skeleton.

74 CLARION 5.5 INTERNET APPLICATION GUIDE

The collection of files is first read by the web-enabled application when it
executes and all of the possible options are stored in an internal database.

When it is time for the app to construct a page, the database is queried and
the application uses a skeleton which best matches the control.and its
properties. If you examine your Skeleton folder, you will notice files such as
button.htm, prompt.htm, string.htm, etc. While the filenames are irrelevant
(unless you explicitly specify a WebStyle file to use for a control),
examination of the meta tags in the HTML files will show you the properties
of the skeleton.

There are four primary properties of a control skeleton which are used to
determine the best match at runtime: Control Type, Style, Capabilities, and
Field Type.

The first is determined by the WINDOW definition:

Control Type

The type of control populated on the WINDOW (e.g., BUTTON, STRING,
ENTRY, etc.).

EXAMPLE:

<meta name=”ts-control” content=”button”>

The other three are determined by values you enter in the Individual
Overrides for a control which allows you to specify properties that the app
will consider when finding the best match at runtime.

The other three are determined by values you enter in the Individual
Overrides for a control which allows you to specify properties that the app
will consider when finding the best match at runtime.

CHAPTER 4 TSCRIPT 75

Skeleton to Use

This “hard-wires” a specific HTML skeleton to the control. If you specify a
filename here, no other properties are considered.

Style

This property allows you to categorize skeletons into a common theme or
style. For example, you can replicate all of the standard skeletons and add a
“western” style to the new skeletons (e.g., images of cactus, wood grain
buttons, etc.).

Extra Capabilities

This property allows you to specify certain capabilities in your skeleton.

Examples:

In the current skeletons, a TAB can be represented in two ways:

with the selected TAB appearing on top and the rest hidden

or

with all TABs showing on a taller page.

This is controlled by specifying the showall property in the Capabilities
prompt in the Internet Connect template in the IDE (individual overrides for
a control).

In TAB.ALL.HTM, you will find these two meta-tags:

<meta name=”ts-control” content=”tab”>
<meta name=”ts-capabilities” content=”showall”>

In TAB.ONE.HTM, you only find a meta-tag for the control Type:

<meta name=”ts-control” content=”tab”>

Therefore, if you specify the showall capability property in the Capabilities
prompt in the WebBuilder template in Clarion, it signifies that
TAB.ALL.HTM best matches and is the one used.

You can use any words as capability keywords. A complete list of the ones
included in the standard skeletons will be published later (after more are
utilized). In this release the following are used:

list.htm: <meta name=”ts-capabilities” content=”drop”>

Supports droplists
query.htm: <meta name=”ts-capabilities” content=”query”>

Supports the query button control template
splash.htm: <meta name=”ts-capabilities” content=”splash”>

76 CLARION 5.5 INTERNET APPLICATION GUIDE

Supports a splash window which closes after the time specified in
the APP

tab.all.htm: <meta name=”ts-capabilities” content=”showall”>

Supports all TABs showing on a taller page.
table.htm: <meta name=”ts-capabilities”
content=”multicolumn,pageloaded,default”>

Multi-column Listbox support (as an HTML table).

Type of Field

This property has not yet been utilized by the current set of skeletons, but its
intended use is for fields which need special formatting such as dates, times,
and monetary pictures.

TSScript

The SoftVelocity scripting language extends the HTML skeleton technology
by allowing additional formatting and conditional options in a skeleton file.
Although the scripting language is fairly simple in design, it is flexible
enough to support complex logic and conditional generation of html from a
Clarion application. A few examples are included at the end of this chapter.

Basic Structure
<TSSCRIPT> </TSSCRIPT>

All script code is enclosed in a pair of tags. <TSSCRIPT> begins
a block of code and </TSSCRIPT> terminates a block. These
can be nested.

Example:

<TSSCRIPT tag=a attr=href replace=NAME value=Contents>

<TSSCRIPT value=Contents>
</TSSCRIPT>

</TSSCRIPT>

Patching

One purpose of these skeleton files is to allow data to replace certain
elements so that it can be delivered in a manner to display in a browser.

tag=<name>

which tag to target; defaults to plain text

Example:

<TSSCRIPT tag=a attr=href replace=NAME value=Contents>

<TSSCRIPT value=Contents>
</TSSCRIPT>

CHAPTER 4 TSCRIPT 77

</TSSCRIPT>

tag=*

Specifies any tag

attr=<name>

Specifies the tag attribute to target. The attribute is inserted if
does not exists.

replace=<string>

The search string to replace with the value attribute. The entire
search string is replaced.

Example:

<TSSCRIPT tag=a attr=href replace=NAME value=Contents>
Click Here
</TSSCRIPT>
patch=<wildcard>

This is the same as replace, but can contain an asterisk (*) as a
wildcard. For example, “think * should”. An asterisk can also
match to start or end.

block=<tag>

This restricts substitutions to within a specified <tag>.
value=expression

The computed value to replace with.
text=string

This is the literal text to replace. If omitted (i.e., no value) it
removes an attribute or tag.

type=text|value|html

Repeats
repeat=count

Duplicates the following code for the number of times specified
(count).

name=<id>

Create a local variable <id> which is bound to the count.

Includes
include=<condition>

Includes the matched items if the condition is true.
omit=<condition>

Includes the matched items if the condition is false.
scope=<name>

Selects the control being addressed by the html.

78 CLARION 5.5 INTERNET APPLICATION GUIDE

General
when=<condition>

Specifies to only replace if the expression is true.
phase=<phase,phase>

Specifies which phase(s) the tag should be processed in. If not
specified, it is processed as soon as the expressions can be
evaluated.

comment=”...”

Used to comment.
<TSINCLUDE Name=”displayText.htm”>

Inserts another skeleton file at the location.

META Tags

The term meta is derived from the Greek word which denotes a nature of a
higher order. Meta data typically consists of a number of pre-defined
elements representing specific properties of a resource, and each of these
elements can have one or more values.

Meta tags were introduced into HTML to allow web authors to specify
document properties without displaying them in a browser. The most
common use of meta tags is to add keywords and a description to a static
web page for search engines. Meta tags can be used to store any document-
wide data. For example, you can specify a document’s author, creation date,
and last modified date. Some HTML authoring tools automatically add some
of these meta data elements.

Clarion usies meta tags to supply properties to skeleton files. This data is
later collected at runtime to determine which skeleton to use for a specific
control. Meta tags are inserted between the <head> and </head> tags.

The following meta tag names are used in the skeleton files:

<meta name=”ts-control” content=”controltype,controltype”>

This tag specifies the control type(s) which the skeleton supports. The
possible control types are:

<meta name=”ts-capabilities” content=”capability,capability”>

This tag specifies the capabilities which the skeleton supports.

CHAPTER 4 TSCRIPT 79

<meta name=”ts-style” content=”style”>

This tag specifies the style(s) which the skeleton supports.
<meta name=”ts-type” content=”fieldtype,fieldtype”>

This tag specifies the field type(s) which the skeleton supports.

WebStyle Examples

Email String

This skeleton formats data from a variable containing an email address so it
is a “Mailto:” hyperlink. To use this skeleton, you would specify the email
capability property in the Capabilities prompt in the Internet Connect
template in the IDE (individual overrides for a control).

<HTML>
<head>
<meta name=”ts-control” content=”sstring”>
<meta name=”ts-capabilities” content=”email”>
</head>
<BODY>
<!— email.string.htm — Start —>
<TSSCRIPT value=”EmbedBeforeControl” type=html>
</TSSCRIPT>
<TSSCRIPT tag=a attr=href replace=NAME value=Contents>

<TSSCRIPT value=Contents>
</TSSCRIPT>

</TSSCRIPT>
<TSSCRIPT value=”EmbedAfterControl” type=html>
</TSSCRIPT>
<!— email.string.htm — End —>
</BODY>
</HTML>

Hyperlink String with terse text displayed

This skeleton formats data from a variable containing a URLaddress so it
displays as a hyperlink. To use this skeleton, you would specify the
hyperlink capability property in the Capabilities prompt and the terse style
property in the Style prompt in the Internet Connect template in the IDE
(individual overrides for a control).

<HTML>
<head>
<meta name=”ts-control” content=”sstring”>
<meta name=”ts-capabilities” content=”hyperlink”>
<meta name=”ts-style” content=”terse”>
</head>
<BODY>
<!— link.string.htm — Start —>
<TSSCRIPT value=”EmbedBeforeControl” type=html>
</TSSCRIPT>
<TSSCRIPT tag=a attr=href replace=NAME value=Contents>
Web Site

80 CLARION 5.5 INTERNET APPLICATION GUIDE

</TSSCRIPT>
<TSSCRIPT value=”EmbedAfterControl” type=html>
</TSSCRIPT>
<!— link.string.htm — End —>.9
</BODY>
</HTML>

Hyperlink String with verbose text displayed

This skeleton formats data from a variable containing a URLaddress so it
displays as a hyperlink. To use this skeleton, you would specify the
hyperlink capability property in the Capabilities prompt and the verbose
style property in the Style prompt in the Internet Connect template in the
IDE (individual overrides for a control).

<HTML>
<head>
<meta name=”ts-control” content=”sstring”>
<meta name=”ts-capabilities” content=”hyperlink”>
<meta name=”ts-style” content=”verbose”>
</head>
<BODY>
<!— link.string2.htm — Start —>
<TSSCRIPT value=”EmbedBeforeControl” type=html>
</TSSCRIPT>
<TSSCRIPT tag=a attr=href replace=NAME value=Contents>

<TSSCRIPT value=Contents>
</TSSCRIPT>

</TSSCRIPT>
<TSSCRIPT value=”EmbedAfterControl” type=html>
</TSSCRIPT>
<!— link.string2.htm — End —>
</BODY>
</HTML>

CHAPTER 5 SKELETON GUIDE 81

5 - SKELETON GUIDE

Introduction
When using the Web Builder templates, special HTML files, called skeletons
are used. As the name implies, these files have very little information in
them, in other words, they are a barebones template. Theare are used to
merge with the Clarion application representation to create an HTML page.
Their purpose is to produce HTML code for a single window control,
window and application. The only exception is the Window.htm which
produces HTML code for the basic page.

These files contain a special scripting language known as TSSCRIPT. For
those familiar with scripting languages, it has similar characteristics with
JavaScript and XML, although it is not a complete version of either of these.
You could also think of it as “templates” for HTML code. The runtime
routines read attributes of TSSCRIPT tags. HTML page generation is done
on the server when it generates the hard HTML file that is piped to the client.
The effect is favorable as it means lower bandwidth usage than Java and a
reliable way to predict how a page and its contents are rendered.

Skeletons can include other skeletons as the need arises. The benefit here is
that you could author your own skeletons and include them with the shipping
skeletons.

Where are the Skeleton files?

As shipped, the skeleton files are located in the Distrib\Skeleton folder.
Under this folder are three style folders, Default, Fish and Wire. These are
theme folders. For purposes of this chapter, the Default theme folder is
examined. These are the files you will find in this folder:

Button.htm Check.htm Box.htm
Combo.htm Detail.htm Email.string.htm
Group.htm Entry.htm Grid.htm
Hotstring.htm Image.htm Item.htm
List.htm Menu.htm Menubar.htm
Panel.htm Query.htm Prompt.htm
Radio.htm Region.htm Sheet.all.htm
Sheet.one.htm Sheet.two.htm Spin.htm
Sstring.htm String.htm Tab.all.htm
Tab.one.htm Table.htm Text.htm
Toolbar.htm Window.htm Splash.htm

82 CLARION 5.5 INTERNET APPLICATION GUIDE

Window.HTM

This is the main skeleton. This controls the default look or appearance for all
windows in your application. This skeleton controls the defaults (which can
be overridden later).

Tip: It is recommended that while you are studying the skeletons
with this reference, you open them with any text editor,
preferably one that understands HTML commands such as
TextPad.

Note: This discussion (and the ones that follow) will work from the
top of the skeleton files down.

<TSSCRIPT value="EmbedMetaTags" type=html></TSSCRIPT>

The <TSSCRIPT> is the beginning tag for using any TSSCRIPT language.
It requires the end </TSSCRIPT> tag. Everything in between these two tags
are attributes. <TSSCRIPT> begins a section of code that is replaced with
HTML at runtime.

The above is an embed point for HTML embedded code in the skeletons.

<meta name="ts-control" content="window,application">

This is standard HTML declaring HTTP meta name/value pairs that are
associated with the HTML document. This is declaring a new meta name
called ts-control and it is used in a window or application.

<TSSCRIPT include="TimeOut != 0">
 <TSSCRIPT tag=meta attr=content replace="DELAY" value="TimeOut">
 <TSSCRIPT tag=meta attr=content replace="PROGRAM.TARGET"
value="ProgramReference">
<meta HTTP-EQUIV="REFRESH" CONTENT="DELAY;URL=PROGRAM.TARGET">
 </TSSCRIPT>
 </TSSCRIPT>
</TSSCRIPT>

This shows several things. First, you can embed HTML code within
TSSCRIPT tags.

The include attribute on the first line means the code following is used only
if the timeout value is not zero. This is very similar to JavaScript. The “!=”
means “not equal to”.

The next line replaces the DELAY attribute with the value in TimeOut. This is
set in the global web template for the application. The default is 600 seconds
or 10 minutes.

The next line takes the PROGRAM.TARGET attribute and replaces it with the
value in ProgramReference. This is the name of the application.

<TSSCRIPT value="Text" patch="*" comment="patch title" >

CHAPTER 5 SKELETON GUIDE 83

This line sets up when the value Text is replaced or patched. The asterisk
means replace in all occurrences. This affects the text placed on the caption
or title bar.

A few lines down you will see:

<TSINCLUDE name="script.htm">

This tag inserts the SCRIPT.HTM file containing the JavaScript used within
the WebBuilder HTML forms. It does not need an end tag.

The following tags set up the default colors for different controls that can be
placed on a page, in other words, it modifies the HTML for controls by
setting color attributes, with a default value, to the control’s HTML code:

<TSSCRIPT comment="Change the colors in the following lines to change the
colors of the generated application"></TSSCRIPT>
<TSSCRIPT tag="<* FinalColor=Border>" attr=bgcolor value="'#dcdcdc'"
comment="Border Color" phase=*>
<TSSCRIPT tag="<* FinalColor=Header>" attr=bgcolor value="'#a0b8c8'"
comment="Header Color" phase=*>
<TSSCRIPT tag="<* FinalColor=HeaderB>" attr=bgcolor value="'#ccccff'"
comment="Header Background Color" phase=*>
<TSSCRIPT tag="<* FinalColor=Cell>" attr=bgcolor value="'#ffffcc'"
comment="Cell Color" phase=*>
<TSSCRIPT tag="<* FinalColor=CellB>" attr=bgcolor value="'#ffffff'"
comment="Cell background color" phase=*>
<TSSCRIPT tag="<* FinalColor=DisabledText>" attr=color value="'Gray'"
comment="Disabled text color" phase=*>
<TSSCRIPT tag="<* FinalColor=HiLightCellColor>" attr=bgcolor
value="'Yellow'" comment="Highlight cell color" phase=*>
<TSSCRIPT tag="<* FinalColor=HiLightTextColor>" attr=color
value="'Black'" comment="Highlight text color" phase=*>

<TSSCRIPT tag="<* FinalColor=*>" attr=FinalColor remove phase=Runtime
comment="Remove pseudo tags from the table entries">

The lines above should be self-evident (and they are explained in detail in the
Common Questions and Answers section). The last line is what is interesting.

This is taking whatever attributes for color are used and replacing them with
the defaults set in the preceeding tag sets. It does this at runtime as the
remove phase suggests.

These two tag sets determine where images and public pages belong relative
to the running program:

<TSSCRIPT tag=img attr=src replace="IMAGES" value="Public" allowblank
comment="Correct the path to images (the public directory)">
<TSSCRIPT tag=img attr=src replace="PUBLIC" value="Public" allowblank
comment="Correct the path to the public directory">

These two replace attributes are filled in at runtime with the correct reference
to the PUBLIC folder. It differs between the linked in broker and a live
deployment, since they usually are in different folders.

84 CLARION 5.5 INTERNET APPLICATION GUIDE

This means images must be in the PUBLIC folder and are referenced by “/
AnImage.GIF” or “/SubFolder/MyImage.GIF”.

The body tag introduces the body of the document. Look at this line:

<body finalcolor="Page" bgcolor="white" onload="onBodyLoad()"
onunload="onBodyUnload()">

This says that each page loaded gets a white background. The onload event
occurs before the user agent (the browser) draws anything. The parameter is
a script. The onunload event whenever an action is taken that will change the
current target such as a link, HTML form completion or browser close.
Again, the parameter is a script. Both are found in SCRIPTS.HTM.

<TSSCRIPT tag=form attr=action value="ProgramReference">
<TSSCRIPT tag=form attr=method value="FormMethod">
<TSSCRIPT tag=form attr=enctype value="FormEncoding">

The lines above set up the attributes for the next line of code that begins the
HTML form used for all WebBuilder pages. All actions returned to your
application are done so through this HTML form or by direct JavaScript
SUBMIT().

<form name="ClarionForm" method="GET" action="PROGRAM.TARGET"
onsubmit="return (submitSuppress-- == 0);">

The next line creates a hiddenHTML form control with a value:

<input type="HIDDEN" name="__Special__" value>

The source below begins an HTML <table>, </table> tag set.

All HTML generated as a representation of your Clarion procedure window
is enclosed within HTML tables. This provides a method to handle
placement of controls and text for display within a browser:

 <table finalcolor="Border" border="0" cellpadding="4" cellspacing="2"
width="100%">
 <tr finalcolor="Header">
 <td width=99%>
 <TSSCRIPT value=Title>
 Page Title
 </TSSCRIPT>
 </td>

Embedded within the HTML tables, used throughout the skeletons for
control placement, you will find other tag sets such as:

<th>, </th> Denote a table header row.
<tr>, </tr> Denote a table row.

Within these table row tags you will find <td>,</td> tag pairs. These tags
create the individual cells within a table row. The "d" in "td" is for data.

The HTML source above defines the top row of cells that represent the
titlebar of your procedure window. This table row uses the predefined
"Header" color, as discussed earlier, for the background for the "Page Title."
"Page Title" is the text you display in your procedure titlebar.

CHAPTER 5 SKELETON GUIDE 85

 <td width=1%>
 <TSSCRIPT tag=a attr=href replace="NAME" value="Name">

 </TSSCRIPT>
 </td>

The <td> tag is a table data cell. The width of the cell is expressed as a
percent of available space. The percent means to use the smallest space
possible, but if more is needed, then the size will grow as needed. The <a>
anchor tag is defining an href to some JavaScript for event processing. In
other words, if this image is clicked, a close window event is signaled.

 <tr>
 <td colspan="2">

 </td>
 </tr>

The colspan attribute attribute specifies the number of columns spanned by
the current cell. The image name is set to ZONE:Menubar, meaning that this
column will contain the menu items.

The rest of the skeleton is code covered in the preceeding text, but with
different settings and the required end tags.

Script.htm

This skeleton sets up the needed JavaScript functions. It is found in the
Skeleton sub folder. If you recall in the previous section for the window
skeleton, there is a line that says:

<TSINCLUDE name="script.htm">

This is a TSSCRIPT command to include another file. This file contains
JavaScript. Look at the first line:

<SCRIPT type="text/JavaScript">

The <SCRIPT> tag is HTML. This introduces or starts a script. The type
attribute is there as there isn’t a standard for the language attribute. In this
script, the text/JavaScript is the standard content type for JavaScript. Other
examples of content types include text/html, image/png, image/gif, video/
mpeg, text/css, and audio/basic.

The next line begins an HTML comment that surrounds all the JavaScript
commands and functions:

<!-- Hides script from old browsers

The end of this HTML comment can be found at the bottom of this file just
above the last line. This may seem confusing at first, but the key to
understand why this works is that you are working with two different
languages. The <!-- is the HTML comment. JavaScript comments start with
double slashes (//) or slash-asterisk (/*) for multi-line comments. Thus, this
entire file is ignored by browsers that cannot handle JavaScript.

86 CLARION 5.5 INTERNET APPLICATION GUIDE

Also, you will notice the // JavaScript comment characters are also
commenting the end HTML comment. This is because JavaScript will try to
interpret the --> characters and it can’t. It will result in JavaScript errors if
left off.

What is between these comments is the actual JavaScript used in the
skeletons. If you wish to add your JavaScript functions, simply add them to
this file. We recommend that you add a comment or two if you do.

The purpose of this chapter is not to teach you JavaScript. Since there are
JavaScript functions listed throughout the skeletons, it is worth noting where
you may find them.

If you view source while your application is running, you will see all the
JavaScript in the generated HTML file.

Box.htm

This is a small skeleton. Its sole purpose is to draw a box, or represents a
BOX control. But where is the box drawn? And around what? Lets examine
some code:

<TSSCRIPT tag=table attr=bgcolor value="FillColor" first>

Some TSSCRIPT to define table background color attributes.

<table border=2>
 <tr>
 <td>
 <img width="300" height="200" name="ZONE:Contents" alt="Wizatrons
will place controls in here">
 </td>
 </tr>
</table>

These lines do the magic. The first defines the width of the border. In this
case, it is 2 pixels wide, all around the table.

For each table row (<tr>) there is one table data cell <td>). In it is used the
image tag with a fixed height and width. It is replaced at HTML generation
time with values based on elements that would make up a table. The above
is sandwiched in TSSCRIPT tags.

The other lines are discussed in the window.htm section. This skeleton is
used when you use a BOX control on your window. The generated HTML
code appears like this:

<!-- Box.htm -- Start -->
<table border=2>
 <tr>
 <td>
 String in a box
 </td>
 </tr>
</table>
<!-- Box.htm -- End -->

CHAPTER 5 SKELETON GUIDE 87

And this is what it looks like at runtime:

Button.htm

This is the skeleton that controls the look and feel of buttons. This skeleton
actually has two sections. These sections start with these lines:

<TSSCRIPT include="Icon != ''">
<TSSCRIPT omit="Icon != ''">

These lines are can be read as:

"Include this section of code if ‘Icon’ is NOT blank." In other words, if this
button includes an image, include the text between this TSSCRIPT tag and
its ending </TSSCRIPT> tag.

"Omit this section of code if ‘Icon’ is NOT blank." In other words, if this
button includes an image, omit the text between this TSSCRIPT tag and its
ending </TSSCRIPT> tag.

The next series of code (starting with the section that has images on buttons)
has these TSSCRIPT lines:

 <TSSCRIPT include="Disabled">
 <TSSCRIPT tag=input attr=src value="Image">
 <INPUT type='image' ALT='Disabled' SRC="SRC">
 </TSSCRIPT>
 </TSSCRIPT>

This is script to have a placeholder for disabled buttons. It simply replaces
the attributes of a particular button with its actual attributes.

The next line of script is for buttons that are not disabled. This is done
starting with this line:

<TSSCRIPT omit="Disabled">

88 CLARION 5.5 INTERNET APPLICATION GUIDE

The script in this section simply checks for image placement, either left or
right justified and writes the appropriate HTML code, including the spacing
of the button, which is placed in a <table>. If there is no text on a button
(image only), then the button is rendered accordingly.

The remaining script deals with text only buttons.

This skeleton is used for all button controls on a page and calls the
JavaScript functions to process the button. In the case of text only buttons, it
uses the HTML submit attribute for input. No JavaScript is required in this
case.

Here is the resulting HTML code generated with a window with two buttons,
one left justified, the other right:

<TABLE cellpadding=0 cellspacing=0 border=0 WIDTH=100%><TR><TD
WIDTH="8%"></TD>
<TD WIDTH="29%" COLSPAN=2>
<table cellspacing=0 cellpadding=0><tr>
<td>
<img SRC='/51/wizok.gif'

BORDER=0 alt=OK>
</td>
<td>
OK</td>
</tr></table>

</TD>
<TD WIDTH="7%"></TD>
<TD WIDTH="29%">
<table cellspacing=0 cellpadding=0><tr>
<td>Cancel</td>
<td>
<img SRC='/51/

wizcncl.gif' BORDER=0 alt=Cancel>
</td>
</tr></table>

</TD>

Here is what that code produces at runtime:

CHAPTER 5 SKELETON GUIDE 89

Check.htm

This is the check box skeleton. When you use a CHECK control, this
skeleton is used to generate the HTML code for it.

<TSSCRIPT include="Disabled">

 <TSSCRIPT include="Checked">
 [X]
 </TSSCRIPT>
 <TSSCRIPT omit="Checked">
 []
 </TSSCRIPT>
 <TSSCRIPT value=DisplayText>
 Checkbox text
 </TSSCRIPT>

</TSSCRIPT>

The above handles the disabled check boxes, whether they are checked or
not. Notice that it includes the default colors from the window skeleton.

The enabled checkbox uses JavaScript to sumbit the actions for the control:

<TSSCRIPT omit="Disabled">
 <TSSCRIPT tag=input attr=name value="Name">
 <TSSCRIPT tag=input attr=id value="Name">
 <TSSCRIPT tag=input attr=checked when="Checked">
 <TSSCRIPT tag=input attr=onClick text="icSubmitForm()"
when="SubmitOnChange">
 <input type="checkbox" value="1">
 <TSSCRIPT tag=label attr=for value="Name">
 <label for="above">
 <TSSCRIPT value=DisplayText>Checkbox text</TSSCRIPT>
 </label>
 </TSSCRIPT>
 </TSSCRIPT>
 </TSSCRIPT>
 </TSSCRIPT>
 </TSSCRIPT>
</TSSCRIPT>

The reason for the difference is that disabled controls do not generate events,
thus it is overkill to have JavaScript render it when HTML is fine.

This is the HTML code generated at runtime:

<TD WIDTH="43%">
 <!-- Check.htm -- Start -->
 <input type="checkbox" value="1" name=CHECK1 id=CHECK1>
 <label for='CHECK1'>Checked
 </label>
 <!-- Check.htm -- End -->
</TD>
<TD WIDTH="48%">
 <!-- Check.htm -- Start -->

 [X]

90 CLARION 5.5 INTERNET APPLICATION GUIDE

 Checked - disabled

 <!-- Check.htm -- End -->
</TD>
<TD WIDTH="4%"></TD>
</TR><TR><TD WIDTH="5%"></TD>
<TD WIDTH="43%">
 <!-- Check.htm -- Start -->
 <input type="checkbox" value="1" name='CHECK1_2' id='CHECK1_2'>
 <label for='CHECK1_2'>Un Checked
 </label>
 <!-- Check.htm -- End -->
</TD>
<TD WIDTH="48%">
 <!-- Check.htm -- Start -->

 []

 Un Checked - disabled

 <!-- Check.htm -- End -->
</TD>

And this is how it looks in a browser:

Combo.htm

This is the skeleton for COMBO controls.

Detail.htm

This is used when making shopping cart applications.

Email.String.htm

This skeleton is used to make an anchor tag (<a>) with an href attribute of
mailto:<EmailAddress>. The EmailAdress needs a properly formatted email
address and parameters.

CHAPTER 5 SKELETON GUIDE 91

Entry.htm

This skeleton is used for ENTRY controls. For each entry control populated
on a window, the skeleton produces the correct HTML code for the entry. It
incorporates the attributes for the control.

If an entry control is read-only, then these skeleton code takes care of that:

<TSSCRIPT include="Disabled || ReadOnly">
 <TSINCLUDE Name="displayText.htm">
</TSSCRIPT>

 This just uses a different skeleton for these types of controls, they just
display them as text.

This section is for entry controls that are not read-only or disabled:

<TSSCRIPT omit="Disabled || ReadOnly">
 <TSSCRIPT tag=input attr=name value="Name">
 <TSSCRIPT tag=input attr=value value="DisplayText">
 <TSSCRIPT tag=input attr=type text="Password" when="Password">
 <TSSCRIPT tag=input attr=size value="(Width+2)/4">
 <TSSCRIPT tag=input attr=onChange text="icSubmitForm()"
when="SubmitOnChange">
 <TSSCRIPT tag=input attr=onFocus text="this.select()"
when=SelectOnFocus>

The above simply gets the entry name, its prompt text, password type entries
(if applicable), default width and set up the JavaScript to detect the event
when it is selected.

<TSSCRIPT include="Req">
 <table border="0" bgcolor="#FF0000" cellspacing="1" cellpadding="0">
 <tr><td>
 <input type=text>
 </td></tr>
 </table>
 </TSSCRIPT>
 <TSSCRIPT omit="Req">
 <input type=text>
 </TSSCRIPT>
 </TSSCRIPT>
 </TSSCRIPT>
 </TSSCRIPT>
 </TSSCRIPT>
 </TSSCRIPT>
 </TSSCRIPT>
</TSSCRIPT>

The next section places a red border around the entry control if the entry is
required. The other attrbutes describe how thick the border is, how far
around the entry control the border is and any padding.

Here is what a entry page could look like:

92 CLARION 5.5 INTERNET APPLICATION GUIDE

And this is the HTML code for the company name in the above example:

<!--Entry.htm -- Start -->
 <input type=text name='CUS_COMPANY' size=22 onFocus='this.select()'>
<!--Entry.htm -- End -->

The following HTML code is for the required entries:

<!--Entry.htm -- Start -->
 <table border="0" bgcolor="#FF0000" cellspacing="1" cellpadding="0">
 <tr><td>
 <input type=text name='CUS_FIRSTNAME' size=22 onFocus='this.select()'>
 </td></tr>
 </table>
<!--Entry.htm -- End -->

Grid.htm

This is the grid skeleton, used when a browse grid control is placed on a
LIST control.

Group.htm

This is the skeleton used when a GROUP control is populated on a window,
Group controls can be used to group related subjects together or they are
used with radio buttons.

<TSSCRIPT include=Boxed>
 <TSSCRIPT tag=table attr=bgcolor value="BorderColor" first>
 <table width="100%">
 <tr>
 <td>

The above first checks to see if the group is boxed. If it is, then it needs to
determine the border color of the box. The table width attribute is expressed
as a percent of available space, in this case, use all that is available.

The next section simply defines how wide the border is and what the text of
the group structure is based on the window control.

 <table border="0" width="100%">

CHAPTER 5 SKELETON GUIDE 93

This next section shows an interesting aspect of TSSCRIPT. In this case,
everything that is between the beginning and end tags is replace by real
values, but only if there is some text to substitute.

 <TSSCRIPT include="DisplayText!=''">
 <tr finalcolor="Header">
 <td><TSSCRIPT value=DisplayText>
 Header Text
 </TSSCRIPT>
 </td>
 </tr>
 </TSSCRIPT>

If the boxed attribute is not set, then this part of the skeletons is used:

<TSSCRIPT omit=Boxed>
 <img width="500" height="261" name="ZONE:Contents" alt="Wizatrons will
place controls in here">
</TSSCRIPT>

The following HTML code is what the skeletons generate for a simple
group:

<!--Group.htm -- Start -->
 <table width="100%">
 <tr>
 <td>
 <table border="0" width="100%">
 <tr bgcolor='#a0b8c8'>
 <td>
 Group 1
 </td>
 </tr>
 <tr>
 <td>
 String in group one</td>
 </tr>
 </table>
 </td>
 </tr>
 </table>
<!--Group.htm -- End -->

And this is for the radio groups:

<!--Group.htm -- Start -->
 <table width="100%">
 <tr>
 <td>
 <table border="0" width="100%">
 <tr bgcolor='#a0b8c8'>
 <td>
 Group Two
 </td>
 </tr>
 <tr>
 <td>

94 CLARION 5.5 INTERNET APPLICATION GUIDE

<TABLE cellpadding=0 cellspacing=0 border=0><TR><TD WIDTH="13%"></TD>
<TD WIDTH="48%">
<!-- Radio.htm -- Start -->
 <input type="Radio" name='OPTION1$Choice' id='OPTION1_RADIO1'
value=1><label for='OPTION1_RADIO1'>Radio 1</label>
 <!-- Radio.htm -- End -->
</TD>
<TD WIDTH="39%"></TD>
</TR><TR><TD WIDTH="13%"></TD>
<TD WIDTH="48%">
<!-- Radio.htm -- Start -->
 <input type="Radio" name='OPTION1$Choice' id='OPTION1_RADIO2'
value=2><label for='OPTION1_RADIO2'>Radio 2</label>
 <!-- Radio.htm -- End -->
</TD>
<TD WIDTH="39%"></TD>
</TR></TABLE></td>
 </tr>
 </table>
 </td>
 </tr>
 </table>
<!--Group.htm -- End -->

If you notice, it includes the radio skeleton (see the section on radio
skeletons). This is what the HTML code looks like at runtime:

Hotstring.htm

This skeleton is designed to be used with the template interface. Notice these
two lines:

<meta name="ts-control" content="sstring">
<meta name="ts-capabilities" content="hotlink">

They align with the two template entry controls, control and capabilities.
This creates a link from a string.

Image.htm

This small skeleton handles images on your page.

CHAPTER 5 SKELETON GUIDE 95

Take a look at these lines (which is really all there is to this skeleton):

<!-- Image.htm -- Start -->
<TSSCRIPT tag=a attr=href value="'javascript:icSubmit(\''+Name+'=1\')'"
when=SubmitOnChange>
<TSSCRIPT tag=img attr=alt value="AltText">
<TSSCRIPT tag=img attr=src value="Image">
<TSSCRIPT tag=img attr=width value="PixelWidth">
<TSSCRIPT tag=img attr=height value="PixelHeight">
<TSSCRIPT tag=img attr=border text="0" when=SubmitOnChange>
<a>

The first line sets up the JavaScript to process an event, such as when a
record is changed, thus a refresh of the image is needed.

The next lines set up the ALT text, the actual image, the image height and
width (in pixels) and a border. All these are replaced in the last line, like
this:

<!-- Image.htm -- Start -->
<a>
<!-- Image.htm -- End -->

And this is what an image looks like in the browser:

Item.htm

This skeleton produces the menu items. If the menu item is a separator, then
it produces the HTML tag for horizontal line, <HR>. If the menu item is
disabled, it displays the text in the disabled color (see the Window skeleton).

If the menu item is clicked, this is detected by the JavaScript icSubmit
function (see the Scripts skeleton).

96 CLARION 5.5 INTERNET APPLICATION GUIDE

List.htm

This sets up a drop list control. The list itself is populated by another
skeleton (see the Select skeleton).

Menu.htm

This skeleton handles the menus.

The generated HTML looks like this:

<!--Menubar.htm -- Start -->
<table border=0>
 <tr valign=top>
<td>
 <table border=0 bgcolor='#dcdcdc'>
 <tr bgcolor='#a0b8c8'>
 <td>
 Browse
 </td>
 </tr>
 <tr><td>

 <NOBR>Customers</NOBR>

 </td></tr>
 </table>
</td>
 </tr>
</table>
<!--Menubar.htm -- End -->

The above code looks like this:

This is the skeleton code that produced the above:

<!--Menu.htm -- Start -->
<form>
<TSSCRIPT value="EmbedBeforeControl" type=html>
</TSSCRIPT>
<td>

CHAPTER 5 SKELETON GUIDE 97

 <table FinalColor=Border border=0>
 <tr FinalColor=Header>
 <td>
 <TSSCRIPT value=DisplayText>
 <p>
 This is the text
 </p>
 </TSSCRIPT>
 </td>
 </tr>
 <tr FinalColor=CellColor><td>

 </td></tr>
 </table>
</td>
<TSSCRIPT value="EmbedAfterControl" type=html>
</TSSCRIPT>
</form>
<!--Menu.htm -- End -->

Menubar.htm

This skeleton is little different than menu. It is used only when you do not
have a drop menu, but a menu bar with items only. The following HTML
code is generated at runtime:

<!--Menubar.htm -- Start -->
<table border=0>
 <tr valign=top>

 <NOBR>Exit!</NOBR>

 </tr>
</table>
<!--Menubar.htm -- End -->

This is what is looks like in the browser:

The skeleton that produced it is as follows:

<!--Menubar.htm -- Start -->
<TSSCRIPT value="EmbedBeforeControl" type=html>

98 CLARION 5.5 INTERNET APPLICATION GUIDE

</TSSCRIPT>
<table border=0>
 <tr valign=top>
 <img name="ZONE:Contents[width=1%]" alt="Wizatrons will place controls
in here">
 </tr>
</table>
<TSSCRIPT value="EmbedAfterControl" type=html>
</TSSCRIPT>
<!--Menubar.htm -- End -->

Panel.htm

This skeleton creates panel controls in HTML. The effect is that you can use
this control to create nice backgrounds around controls.

The skeleton code is as follows:

<table FinalColor=Border>
 <tr>
 <td>
 <table FinalCoor=Header border="0" cellpadding="0" cellspacing="0"
width="100%">
 <tr>
 <td><img width="300" height="200" name="ZONE:Contents"
alt="Wizatrons will place controls in here"></td>
 </tr>
 </table>
 </td>
 </tr>
</table>

Which makes it look similar to this:

The actual HTML code is as follows:

<!-- Panel.htm -- Start -->
<head>
</head>
<table bgcolor='#dcdcdc'>
 <tr>
 <td>

CHAPTER 5 SKELETON GUIDE 99

 <table FinalCoor=Header border="0" cellpadding="0" cellspacing="0"
width="100%">
 <tr>
 <td>
 String in a panel</td>
 </tr>
 </table>
 </td>
 </tr>
</table>
<!-- Panel.htm -- End -->

If you notice, there is no TSSCRIPT for the panel, yet it uses “variables” set
by TSSCRIPT commands. These come from the window skeleton.

Prompt.htm

The Prompt skeleton includes the DisplayText skeleton to do its work. Other
than two embed points, that is all there is. See DisplayText.

Query.htm

The Query skeleton is used for QBE controls and is used when a user is
performing QBE functions. The HTML produced is as follows:

<!-- Start of Query.htm -->
 <input type="HIDDEN" value='0' name='Feq1020$Choice'>
 <input type="SUBMIT" value=' ' name='Feq1020'
onClick='cycleQuery(this, ClarionForm.Feq1020$Choice)'>
<!-- End of Query.htm -->

This code is produced for each control in the query dialog. The QBE
template default is for a form interface and this is how it is rendered in a
browser:

100 CLARION 5.5 INTERNET APPLICATION GUIDE

Note: You cannot use the list version of QBE in a web application as
it uses edit-in-place. You will get a warning message about
this if you do.

The buttons to the right of the entries set the matching rules (greater than,
less than, etc) and work just like the desktop version. Each press of these
buttons cycles through all the valid choices. This is done by these lines of
skeleton code:

<TSSCRIPT tag=input attr=onClick replace="NAME" value="Name">
 <input type="SUBMIT" value=" " name="NAME" onClick="cycleQuery(this,
ClarionForm.NAME$Choice)">
</TSSCRIPT>

It calls a JavaScript function called cycleQuery. This function is defined in
the scripts.htm file. The function is simple and if you examine the code, it is
not too dissimilar to the way it would be coded in Clarion:

 function cycleQuery(cur, choice)
 {
 submitSuppress++;
 choice.value = (Number(choice.value) + 1) % 5
 switch (Number(choice.value))
 {
 case 0: cur.value = ' '; break;
 case 1: cur.value = ' = '; break;
 case 2: cur.value = '>='; break;
 case 3: cur.value = '<='; break;
 case 4: cur.value = '<>'; break;
 }
 }

The switch command is the same as the CASE in Clarion. The case is the
same as the OF.

Radio.htm

This is the radio button skeleton. It is used when radio buttons are displayed.
While radio buttons are used on lists to indicate the highlighted row, this is
done with another skeleton. See Table.htm.

For option groups (groups that contain radio buttons), the following is the
HTML generated for each radio button:

<!-- Radio.htm -- Start -->
 <input type="Radio" name='OPTION1$Choice' id='OPTION1_RADIO1'
value=1><label for='OPTION1_RADIO1'>Radio 1</label>
 <!-- Radio.htm -- End -->

CHAPTER 5 SKELETON GUIDE 101

It looks like this when running in a browser:

The skeleton code for generating HTML radio buttons is as follows:

<TSSCRIPT omit="Disabled">
 <TSSCRIPT tag=input attr=id value="Name">
 <TSSCRIPT tag=input attr=Name replace="NAME" value="Container.Name">
 <TSSCRIPT tag=input attr=checked when="Container.ChoiceFEQ==FEQ">
 <TSSCRIPT tag=input attr=disabled when="Disabled">
 <TSSCRIPT tag=input attr=onClick text="icSubmitForm()"
when="SubmitOnChange || Container.SubmitOnChange">
 <TSSCRIPT tag=input attr=value value="ChildIndex">
 <input type="Radio" name="NAME$Choice">
 <TSSCRIPT tag=label attr=for value="Name">
 <label>
 <TSSCRIPT value=DisplayText>
 </TSSCRIPT>
 </label>
 </TSSCRIPT>

The above is used only when the radio button is enabled. If disabled, it
includes the DisplayText skeleton.

The various TSSCRIPT lines gather information about the radio button,
including it’s Field Equate and setting up event handling via a JavaScript
function.

This is so that the HTML code that declares an input of radio type, also gives
a name to this control. As you can see in the generated HTML, the
TSSCRIPT commands above build the input tag.

Region.htm

This skeleton is used for REGION controls.

Sheet.all.htm

Not documented at this time.

102 CLARION 5.5 INTERNET APPLICATION GUIDE

Sheet.one.htm

This is the default skeleton used when a sheet control is used. Even with
sheet controls containing other sheet controls on your window, this skeleton
will generate the HTML code to render it in your browser.

This skeleton does not do much as the code below shows:

<!-- Sheet One.htm -- Start -->
<TSSCRIPT value="EmbedBeforeControl" type=html></TSSCRIPT>
<IMG name="ZONE:Default:Contents" alt="Wizatrons will place controls in
here">
<TSSCRIPT value="EmbedAfterControl" type=html></TSSCRIPT>
<!-- Sheet One.htm -- End -->

The window skeleton causes the tab skeleton to be included in the sheet. See
Window and Tab skeleton sections.

Sheet.two.htm

Not documented at this time.

Spin.htm

This skeleton gathers data and attributes about spin controls on a window
and renders the HTML code to produce the control, complete with event
trapping.

There are two major sections (if the control is enabled, otherwise it uses the
DisplayText skeleton to represent a disabled control See DisplayText
skeleton).

If the spin control does not have a From entry, this section of skeleton code is
used:

 <TSSCRIPT Omit="From!=''">
 <table cellpadding="0" cellspacing="0"><tr><td>
 <TSSCRIPT tag=input attr=value value="DisplayText">
 <TSSCRIPT tag=input attr=name value="Name">
 <TSSCRIPT tag=input attr=size value="(Width+2)/4">
 <input type="TEXT" value="Text" name="NAME">
 </TSSCRIPT>
 </TSSCRIPT>
 </TSSCRIPT></td>
 <TSSCRIPT tag=input attr=onClick replace="NAME" value="Name">
 <TSSCRIPT tag=input attr=onClick replace="RANGEHIGH"
value="RangeHigh">
 <TSSCRIPT tag=input attr=onClick replace="RANGELOW" value="RangeLow">
 <TSSCRIPT tag=input attr=onClick replace="STEP" value="Step">
 <td><input type="submit" value="<" onclick="spin(ClarionForm.NAME,-
STEP,RANGEHIGH,RANGELOW);"></td>
 <td><input type="submit" value=">"
onclick="spin(ClarionForm.NAME,+STEP,RANGEHIGH,RANGELOW);"></td>
 </TSSCRIPT>
 </TSSCRIPT>

CHAPTER 5 SKELETON GUIDE 103

 </TSSCRIPT>
 </TSSCRIPT>
 </tr></table>
 </TSSCRIPT>

This is the generated HTML code:

<!-- Spin.htm -- Start -->
 <table cellpadding="0" cellspacing="0"><tr><td>
 <input type="TEXT" value='5.00' name='DTL_QUANTITYORDERED' size=14></td>
 <td><input type="submit" value="<"
onclick='spin(ClarionForm.DTL_QUANTITYORDERED,-1,999,1);'></td>
 <td><input type="submit" value=">"
onclick='spin(ClarionForm.DTL_QUANTITYORDERED,+1,999,1);'></td>
</tr></table>
<!-- Spin.htm -- End -->

The above will produce a spin box like the following image:

If the From entry is used (meaning it gets its values from a Queue), the
following skeleton code is used to produce the HTML code at runtime:

<TSSCRIPT Include="From!=''">
 <TSSCRIPT tag=input attr=name value="Name">
 <TSSCRIPT tag=input attr=value value="DisplayText">
 <TSSCRIPT tag=input attr=size value="(Width+2)/4">
 <TSSCRIPT tag=input attr=onChange text="icSubmitForm()"
when="SubmitOnChange">
 <TSSCRIPT tag=input attr=onFocus text="this.select()"
when=SelectOnFocus>
 <TSSCRIPT include="Req">

104 CLARION 5.5 INTERNET APPLICATION GUIDE

 <table border="0" bgcolor="#FF0000" cellspacing="1"
cellpadding="0">
 <tr><td>
 <input type=text>
 </td></tr>
 </table>
 </TSSCRIPT>
 <TSSCRIPT omit="Req">
 <input type=text>
 </TSSCRIPT>
 </TSSCRIPT>
 </TSSCRIPT>
 </TSSCRIPT>
 </TSSCRIPT>
 </TSSCRIPT>
 </TSSCRIPT>

Splash.htm

This skeleton produces the HTML for splash procedures. This skeleton is a
different version of the window skeleton, as splash procedures usually have a
different look and feel than the appearance of the rest of the program. To
this end, there are settings that are different than the window skeleton.

Tip: If you like the style of the splash skeleton, you can use it as
the skeleton for the window of any procedure. You can do this
by setting the window override in the local extension.

Only the differences between this skeleton and the window skeleton are
covered in this section. See Window.htm for more information.

Outside of some TSSCRIPT differences, the following skeleton code is what
makes the difference:

<CENTER>
<table bgcolor="#ccccff" border="1" width=60%>
 <tr>
 <td valign="center" align="center">

 </td>
 </tr>
 <tr>
 <td valign="center" align="center">
 <TSSCRIPT tag=a attr=href value="ProgramReference">
 Continue
 </TSSCRIPT>
 </td>
 </tr>
</table>
</CENTER>

Most of the above is cosmetic (colors, alignments, borders, etc.). Inspect the
<A HREF> line. This adds a hyperlink that looks like this at runtime:

 Continue

CHAPTER 5 SKELETON GUIDE 105

Sstring.htm

Not documented at this time.

String.htm

A very simple skeleton that includes another skeleton. See DisplayText.

Tab.all.htm

Not documented at this time.

Tab.one.htm

This skeletons shows the tabs on a sheet. Each tab is actually a link with a
background color. This skeleton does quite a lot to enure that the tabs work
like the program’s desktop equivalent.

<!-- Tab One.htm -->
<TSSCRIPT local name=SelectedTab value="phase=='runtime' ?
Container.Choice : ChildIndex">

This line sets up the current tab with the current key used for sorting. At
runtime, the attributes are replaced by the data in the program.

A few lines down and you see this TSSCRIPT line:

 <TSSCRIPT omit="Wizard">

This means that this procedure is not a Wizard style procedure. If it is, then
all remaining skeleton code is not used.

This line sets up a “loop” to process each tab on the procedure:

 <TSSCRIPT repeat times="Container.NumTabs" name=curTab>

This means that for every tab placed on the list, the remaining skeleton code
sets up the HTML code to be generated at runtime.

Now examine this code a few lines down:

 <td FinalColor=Header nowrap>

 <TSSCRIPT value="thisTab.DisplayText">SELECTEDTAB</TSSCRIPT>

 </td>

This code uses some HTML code to space the text on the tabs and ensure
they stay on one line This is done with , which means “non-breaking
space”. If this is not used, the text on tabs could wrap unpredictably. Plus, it
ensures that there is white space before and after the text. This makes the
text look even on all sides of the tab.

The next section sets up the events for selecting a different tab:

106 CLARION 5.5 INTERNET APPLICATION GUIDE

 <td FinalColor=Border nowrap>
 <TSSCRIPT tag=a attr=* replace="PROGRAM"
value="ProgramReference">
 <TSSCRIPT tag=a attr=* replace="NAME"
value="Container.Name">
 <TSSCRIPT tag=a attr=* replace="CURTAB" value="curTab">

 <TSSCRIPT value="thisTab.DisplayText">UNSELECTEDTAB</TSSCRIPT>

 </TSSCRIPT>
 </TSSCRIPT>
 </TSSCRIPT>
 </td>

This section takes the values in the program (the TSSCRIPT lines), adds
some non-breaking spaces (for tab separation). It then uses a JavaScript
function to process the event for when a new tab is chosen.

At runtime, the following HTML is generated (edited for content):

<!-- Tab One.htm -->
<table border="0" cellpadding="0" cellspacing="0" width="100%">
 <tr align="left"><td>
 <table border="0" cellpadding="2" cellspacing="0" width="1%"><tr>
 <td nowrap bgcolor='#a0b8c8'>

 General

 </td>
 <td> </td>
 <td nowrap bgcolor='#dcdcdc'>

General
(cont.)

 </td>
 <td> </td>
 <td nowrap bgcolor='#dcdcdc'>

Orders

 </td>
 <td> </td>
 <td> </td>
 </tr>
 </table></td></tr>
 <tr>
 <td bgcolor='#a0b8c8'>
<TABLE cellpadding=0 cellspacing=0 border=0 WIDTH='100%'><TR><TD
WIDTH="2%"></TD>
<TD WIDTH="27%">
 Company:
</TD>
<TD WIDTH="40%" COLSPAN=3>
<!--Entry.htm -- Start -->

CHAPTER 5 SKELETON GUIDE 107

!Entry controls here
<!--Entry.htm -- End -->
</TD>
<TD WIDTH="10%"></TD>

<!-- /Tab One.htm -->

The following is what it looks like:

Table.htm

This skeleton handles the way LIST controls on browse procedures are
rendered with HTML.

This group of skeleton code sets the text for each column header:

<TSSCRIPT repeat times="FromColumns" name=column>
 <th>
 <TSSCRIPT value="ColumnHeader[column-1]">
 HEADERTEXT
 </TSSCRIPT>
 </th>
 </TSSCRIPT>

This set of code a little further down, produces the radio buttons that indicate
the current row on the list:

<TSSCRIPT tag=input attr=name replace="NAME" value="Name">
 <TSSCRIPT tag=input attr=value value="row">
 <TSSCRIPT tag=input attr=checked value="1"
when="Choice==row">

108 CLARION 5.5 INTERNET APPLICATION GUIDE

 <TSSCRIPT tag=input attr=id replace="FEQ" value="Name">
 <TSSCRIPT tag=input attr=id replace="ROWNO"
value="row">
 <TSSCRIPT tag=input attr=onClick
text="icSubmitForm()" when="SubmitOnChange">
 <input type="radio" value="ROW"
name="NAME$Choice" id="FEQ$ROWNO">

Further down is the code to format the text that appears in each cell of the
list:

<TSSCRIPT local name="curColor" value="CellForeColor[row-1][column-1]">
 <TSSCRIPT value="''" type=html
when="curColor !=0"></TSSCRIPT>
 <TSSCRIPT tag=label attr=for replace="FEQ" value="Name">
 <TSSCRIPT tag=label attr=for replace="ROWNO" value="row">
 <LABEL FOR="FEQ$ROWNO">
 <TSSCRIPT value="CellText[row-1][column-1]=='' ? ' ' : CellText[row-
1][column-1]" phase=runtime>
 CELLTEXT

After the closing tags, the navigation buttons are placed at the bottom of the
list:

 <TSSCRIPT include="NavigationControls">

The navigation buttons are worthless if there is no event processing for each
button. This is done with calls to JavaScript functions:

<TSSCRIPT tag=a attr=href replace="NAME" value="Name">
<img ALT='First'
WIDTH="32" HEIGHT="32" SRC="PUBLIC/wizFirst.gif" border=0>
<img ALT='Prior'
WIDTH="32" HEIGHT="32" SRC="PUBLIC/wizPgUp.gif" border=0>
<img ALT='Up'
WIDTH="32" HEIGHT="32" SRC="PUBLIC/wizUp.gif" border=0>
<img ALT='Down'
WIDTH="32" HEIGHT="32" SRC="PUBLIC/wizDown.gif" border=0>
<img ALT='Next'
WIDTH="32" HEIGHT="32" SRC="PUBLIC/wizPgDn.gif" border=0>
<img ALT='Last'
WIDTH="32" HEIGHT="32" SRC="PUBLIC/wizLast.gif" border=0>
</TSSCRIPT>

The skeletons generate the following HTML code at runtime:

<!-- Table.htm -- Start -->
<table border="0" width="100%" bgcolor='#dcdcdc'>
 <tr>
 <td>
 <table border="0" width="100%">
 <tr bgcolor='#ccccff'>
 <th width="2">

 </th>
 <th>
 State Code
 </th>
 <th>
 State Name
 </th>
 </tr>

CHAPTER 5 SKELETON GUIDE 109

 <tr bgcolor='#ffffff'>
 <td width="2">
 <input type="radio" value='1' name='BROWSE_1$Choice' id='BROWSE_1$1'
checked=1>
 </td>
 <td>
 <LABEL FOR='BROWSE_1$1'>
 AK
 </LABEL>
 </td>
 <td>
 <LABEL FOR='BROWSE_1$1'>
 Alaska
 </LABEL>
 <!-- other rows and end tags edited for readability -->
<td bgcolor='#ccccff'>
<img ALT='First'
WIDTH="32" HEIGHT="32" SRC='/wizFirst.gif' border=0>
<img ALT='Prior'
WIDTH="32" HEIGHT="32" SRC='/wizPgUp.gif' border=0>
<img ALT='Up'
WIDTH="32" HEIGHT="32" SRC='/wizUp.gif' border=0>
<img ALT='Down'
WIDTH="32" HEIGHT="32" SRC='/wizDown.gif' border=0>
<img ALT='Next'
WIDTH="32" HEIGHT="32" SRC='/wizPgDn.gif' border=0>

<!-- Table.htm -- End -->

You will have a list box similar to this at runtime:

110 CLARION 5.5 INTERNET APPLICATION GUIDE

Text.htm

This is the skeleton that generates the HTML version of a TEXT control.

The skeleton can get the attributes of the text control, and give you an HTML
versions of the control.

<!-- Text.htm -- Start -->
<textarea rows='9' cols='25' wrap=off name='ORD_ORDERNOTE'></textarea>
<!-- Text.htm -- End -->

The above is generated by the following skeleton code:

<!-- Text.htm -- Start -->
<TSSCRIPT value="EmbedBeforeControl" type=html></TSSCRIPT>
<TSSCRIPT tag=textarea attr=name value="Name">
<TSSCRIPT tag=textarea attr=disabled value=1 when="Disabled">
<TSSCRIPT tag=textarea attr=readonly value=1 when="Readonly">
<TSSCRIPT tag=textarea attr=rows value="(Height+4)/8">
<TSSCRIPT tag=textarea attr=cols value="(Width+2)/4">
<TSSCRIPT tag=textarea attr=onChange text="icSubmitForm()"
when="SubmitOnChange">
<TSSCRIPT tag=textarea attr=wrap text="soft" when="!HScroll">
<textarea rows="1" cols="20" wrap=off>
<TSSCRIPT value=DisplayText>String Text</TSSCRIPT></textarea>
<TSSCRIPT value="EmbedAfterControl" type=html></TSSCRIPT>
<!-- Text.htm -- End -->

The text control could look similar to this:

CHAPTER 5 SKELETON GUIDE 111

Toolbar.htm

All this skeleton code does in define an area in which button controls are
placed. See Button skeleton.

Summary

If you understand the pieces of the skeletons, then you can see how they fit
together. You can even author your own skeletons and simply write
TSSCRIPT commands to include them.

112 CLARION 5.5 INTERNET APPLICATION GUIDE

CHAPTER 6 COMMON QUESTIONS AND ANSWERS 113

6 - COMMON QUESTIONS AND ANSWERS

Introduction
This section covers several common questions that we found to be helpful
with getting your application running quickly. The focus of these questions
are the Skeletons, although it is not restricted to them. For more information
on Skeletons, see the Skeleton Reference chapter in this manual. The purpose
of this section is to offer as many real world issues as possible.

When an application is run in a browser, you can see the HTML code
generated by the skeletons (RIGHT-CLICK on a blank area of a page and choose
View Source). This is the best way to understand how the skeletons interact
with your program to produce the final result.

Common Questions

How do I set background colors for pages in my application?

This is controlled from the Window.htm skeleton. In this file, you will see a
TSSCRIPT line that is a comment about colors. The next set of lines defines
TSSCRIPT tags and their attributes. One of the attributes is a default color.
Lets examine one of these lines:

<TSSCRIPT tag="<* FinalColor=CellB>" attr=bgcolor value="'#ffffff'"
comment="Cell background color" phase=*>

What this line is doing is stating that a new FinalColor tag, named CellB, has
a default background color attribute with value #ffffff. The phase=* means
that is can be overridden by any phase value later, for example; runtime. If
you examine a few lines further down you see this line:

<TSSCRIPT tag="<* FinalColor=*>" attr=FinalColor remove phase=Runtime
comment="Remove pseudo tags from the table entries">

This line is simply stating that whatever tag is being used now, use whatever
color is setup at runtime. This tells you that the line you need to change is the
first one. You can replace the #ffffff with another color, for example,
‘Green’.

The following is a list of color attributes and what controls they affect.

114 CLARION 5.5 INTERNET APPLICATION GUIDE

How can I set a default font?

You can do this with the tag. Since there are skeletons for each
type of control (CHECK, STRING, TAB, etc), setting the font for each of
these files is labor intensive. It also is considered a “no-no” for HTML 4.x
specifications. See http://www.w3.org/MarkUp/ for comments about this. If
you know you will need to support older browsers, then use the
tag. The previous link has specifics about this.

How can I implement Cascading Style Sheets?

A better way of using fonts is Cascading Style Sheets (CSS). For a good
reference on CSS standards, see http://www.w3.org/Style/CSS/ for a list of
many resources on this subject.

In short, a CSS sets a style for fonts and appearance and is used on tags, for
example <p> which begins a new paragraph. You could think of these as the
event embeds for HTML. When a new paragraph happens, insert the new
CSS and activate it.

Note: Not all browsers support this relatively new feature. The
above link has a list of browsers (and minimum version) that
do.

<head>
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1">
<title>This displays text in the title bar</title>
<link rel="stylesheet" type="text/css" href="../mysheets/kewlstyle.css">
</head>

Skeletons support this feature too. You could modify one to use them. Here is
an example:

http://www.w3.org/Style/CSS

CHAPTER 6 COMMON QUESTIONS AND ANSWERS 115

<!-- Window.htm -- Start -->
<html>
<head>
<title>
The Best of FAQs</title>
<style type="text/css">
</style>
<style type="text/css">
</style>

You could also change the window skeleton as follows:

<TSSCRIPT value=”EmbedBeforeHeadClose” type=html></TSSCRIPT>
<style type=”text/css”><!—td{font-family: verdana,arial,sans serif;font-
size: x-small;}—></style>
<style type=”text/css”><!—pre{font-family: courier new,courier;font-size:
x-small;}—></style>
</head>

How can I have an image with text on a button?

Here is a way to make an image a link if your Skeleton (Image.htm) has the
line:

<a>

to display the image.

Bracket this with TSSCRIPT as shown below.

<TSSCRIPT tag=a attr=href value="ImageLink" when="ImageLink!=''">
<a>
</TSSCRIPT>

Add the image in the IDE. On the Position tab set the width and height of
the button. In Internet Options - Controls - Properties - Properties - Insert.

Name: ImageLink

Type: String

Value: 'http://127.0.0.1/default.htm'

Do not check the Refresh when changed on the Events Tab.

Save all dialogs and compile and run.

The HTML that is sent to the client looks like:

<!-- Image.htm -- Start -->
<img src='/public/MyImage.jpg'
width=88 height=21>
<!-- Image.htm -- End -->

As an alternative, you can make HTML buttons with images. This is done
with buttons. For example:

116 CLARION 5.5 INTERNET APPLICATION GUIDE

<BUTTON name=”submit” value=”submit” type=”submit”> Send<IMG src=”/
image.gif” alt=”text on the button”></BUTTON>

In this example, the button is used to send data on a <FORM>.

How can I get better control over size & placement of controls?

Place related groups of controls inside Group structures on windows. Tables
that are generated are generated around these structures instead of around the
individual controls.

How can I use meta-tags?

To use meta-tags in a Clarion application, go to the embeds for a procedure.
Find the embed point, Internet, inside the <META> tag area. Insert your
Dynamic or Static HTML here.

How can I make a pop-up window for data validation?

A commonly user web page technique is to open a new window when a link
is selected.

<a HREF=”JavaScript:void(0)”onClick=”window.open(‘http://
www.softvelocity.com/cws/c5launch.dll/example/example.exe.0’,
’’,’toolbar=no,directories=no,captionbar=no,status=yes,menubar=no,scrollbars=yes,
location=no,width=550,height=400,resizable=yes’);”
onmouseover=”self.status=’Just the FAQs’; return true “>Go therenow

CHAPTER 6 COMMON QUESTIONS AND ANSWERS 117

The embedded HTML code should be added in the Internet, before closing
</HEAD> tag embed point.]

What is the difference between POST and GET and how do I change between
the two?

GET and POST are two ways that information is passed to the server from an
application. By default, a Clarion application uses the GET method.

The GET communicates with the server by appending the form data to the
URL specified by the action attribute (with a question-mark (“?”) as
separator) and this new URL is sent to the processing agent.

The POST method, communicates with the server by including the data in
the body of the form. It is then sent to the processing agent.

The GET method should be used when the form does not make changes to a
database or side-effects. Many database searches have no visible side-effects
and make ideal applications for the GET method.

If the service associated with the processing of a form causes side effects
(for example, if the form modifies a database or subscription to a service),
the POST method should be used.

Note: The GET method restricts form data set values to ASCII
characters. Only the POST method (with enctype=”multipart/
form-data”) is specified to cover the entire [ISO10646]
character set.

118 CLARION 5.5 INTERNET APPLICATION GUIDE

To set this, you should be on the extensions for the procedure you wish to
change.

On the Properties tab enter:

The Window.htm skeleton has these lines in it (partially shown):

<TSSCRIPT tag=form attr=method value="FormMethod">
<TSSCRIPT tag=form attr=enctype value="FormEncoding">
 <form name="ClarionForm" method="GET"

The above defines a tag called form with a value of Form Method. The form
name is the name of this tag and its method. The template dialog simply
changes the default value of GETto POST.

If you wish to change this globally, then edit window.htm.

CHAPTER 6 COMMON QUESTIONS AND ANSWERS 119

How can I get server variables and their values?

You can obtain whatever information about properties that you wish from a
skeleton.

What you need to do is to specify a Skeleton Property and then derive the
GetProperty method and return the global variable instead.

For example : Glo:Amount

In the skeleton:

<TSSCRIPT value="Amount"></TSSCRIPT>

In the procedure

GetProperty
 IF name="Amount"
 RETURN CreateStringValue(Glo:Amount)

Note: There is also a code template available to accomplish thi task.

How can I create tooltips?

To have your buttons or images display a tooltip, place the text in the Tip
prompt on the control properties Help tab. The TIP will become an ALT=
HTML attribute of the control.

How can I launch a Clarion application from a link?

You need to provide a link on the web page where the Clarion application is
to be called from. This can be an image, hyperlink, button, etc, depending
on the effect you wish. Here is an example:

<a href="http://somesite.com/cws/c5launch.dll/demos/demo.exe.0" Click here
for a demo.

120 CLARION 5.5 INTERNET APPLICATION GUIDE

How can I add email capability to my applications?

All you need is an entry control for the email address. However, this does not
give you email capability. For the entry control, that contains the address, tell
the skeletons about the extended capability for the entry control. This is
done via the Web procedure extension. Just add email in the Extra
Capabilities entry.

This skeleton formats data from a variable containing an email address so it
is a “Mailto:” hyperlink. To use this skeleton, you would specify the email
capability property in the Capabilities prompt in the Internet Connect
template in the IDE (individual overrides for a control).

<HTML>
<head>
<meta name=”ts-control” content=”sstring”>
<meta name=”ts-capabilities” content=”email”>
</head>
<BODY>
<!— email.string.htm — Start —>
<TSSCRIPT value=”EmbedBeforeControl” type=html>
</TSSCRIPT>
<TSSCRIPT tag=a attr=href replace=NAME value=Contents>

<TSSCRIPT value=Contents>
</TSSCRIPT>

</TSSCRIPT>
<TSSCRIPT value=”EmbedAfterControl” type=html>
</TSSCRIPT>
<!— email.string.htm — End —>
</BODY>
</HTML>

INTERNET CONNECT 121

AAAA A
vvvv v a

ila
b
le

 O
n
ly

 in
 P

ai
la

b
le

 O
n
ly

 in
 P

ai
la

b
le

 O
n
ly

 in
 P

ai
la

b
le

 O
n
ly

 in
 P

ai
la

b
le

 O
n
ly

 in
 P

rrrr r o
fe

ss
io

n
al

 a
n
d
 E

n
te

rp
ri

se
of

es
si

on
al

 a
n
d
 E

n
te

rp
ri

se
of

es
si

on
al

 a
n
d
 E

n
te

rp
ri

se
of

es
si

on
al

 a
n
d
 E

n
te

rp
ri

se
of

es
si

on
al

 a
n
d
 E

n
te

rp
ri

se
E

d
it

io
n
s

E
d
it

io
n
s

E
d
it

io
n
s

E
d
it

io
n
s

E
d
it

io
n
s

PART II
——

INTERNET CONNECT

122 CLARION 5.5 INTERNET APPLICATIONS USER’S GUIDE

7 - TUTORIAL—MAKING A WEB APPLICATION

In Clarion, you can create an application from a data dictionary—with no
coding required. All you need to do is create the Data Dictionary then use
the Application Wizard to make a complete Windows application—in
minutes! With Internet Connect, the Application Wizard has an additional
checkbox that lets you Web-enable the application you are creating. This
allows you to create a Web application with only one additional click of your
mouse!

In this chapter, you will:

◆ Use the Application Wizard to create a hybrid Web/Windows
application from a Clarion Data Dictionary, then run the program using
your browser.

◆ Compile and deploy the application, then run it in a browser.

◆ Optimize that application for the Web using the template interface,
recompile, deploy it, and run it again.

◆ Modify the appearance of the application for the Web, recompile, deploy
it, and run it again.

This should all take about thirty minutes—without any “coding” on your
part. By the end of this chapter, you’ll have a complete application for a
simple order entry system.

Let’s get started!

CHAPTER 7 TUTORIAL—MAKING A WEB APPLICATION 123

Web Application Wizard

Creating a hybrid Web/Windows Application

Starting Point:
You should have the Clarion development environment open.

This tutorial assumes that you installed Clarion in C:\C55 and the
Application broker in C:\CWICWEB. If you used different directories, you
will have to modify the instructions accordingly. This tutorial also assumes
that you have completed the tutorials in the Clarion Getting Started and
Learning Clarion manuals and have a basic familiarity with the Clarion
development environment.

Create your first Clarion Web application

1. On the Pick dialog, select the Application tab, then press the New...
button.

This opens the New dialog.

2. Select C:\C55\Examples\WebTutor from the Directories list.

3. Type WebOrder in the File Name field.

4. Make sure the Use Quick Start Wizard box is not checked, then press
the Save button.

This opens the Application Properties dialog.

5. Press the elipsis (...) button to the right of the Dictionary File entry box.

This opens the Select Dictionary dialog.

6. Highlight the WebOrder.dct (in the C:\C55\Examples\WebTutor\
directory) file then press the Open button.

Run the Application Wizard

1. Check the Application Wizard box, then press the OK button.

124 CLARION 5.5 INTERNET APPLICATIONS USER’S GUIDE

2. Press the Next button.

3. Press the Next button.

4. Press the Next button.

5. Check the Create an Internet enabled application box, then press the
Next button.

This step makes two changes to the application the Application Wizard
creates: 1) it makes it 32-bit and 2) it adds the Internet extension
templates to the application.

CHAPTER 7 TUTORIAL—MAKING A WEB APPLICATION 125

6. Uncheck the Generate Reports for each file box, then press the Finish
button.

The Application Wizard creates the application.

Make the Application

1. Choose Project ➤ Make (or press the Make button on the toolbar).

Congratulations! Your first Web application is ready to deploy and run.

2. Press the OK button on the compile results window.

126 CLARION 5.5 INTERNET APPLICATIONS USER’S GUIDE

Deploying the Application

The last step created WebOrder.exe. Since it is a Web-enabled application, it
can now run under Windows as a standard Windows executable or over the
Web through the Application Broker using a browser. Next we will deploy
the application and the files it needs to execute. Note that we are deploying
this to a different directory on the same machine, but the process would be
the same to deploy the program to a server machine.

1. Open Windows Explorer (or Windows NT Explorer).

2. Copy WebOrder.exe from the C:\C55\Examples\Webtutor directory to the
C:\CWICWEB\EXEC\WebTutor directory.

Keep in mind that merely dragging files in Explorer creates a shortcut to
executable files. If you use the drag-and-drop method, you should right-
drag and select copy from the popup menu.

Note: We have provided sample data files in both directories. If you
had local data files, you would need to deploy them, also.

3. Copy the files listed below from the C:\C55\BIN directory to the
C:\CWICWEB\EXEC\WebTutor directory.

C55RUNx.DLL
C55TPSx.DLL
C55ASCx.DLL
C55DOSx.DLL

These are the support DLLs your application uses, including the runtime
library and database drivers.

This step is included here even though it may not be necessary under
Windows 95 (on your development machine) because these files are in
your PATH. However, NT server behaves differently. Each user has a
PATH and deploying the DLLs with the .EXE ensures that the user
accessing the application through a browser has the support files
available. This is explained in detail in Deploying Applications.

4. Start the Application Broker by DOUBLE-CLICKING on C55APS10.exe (or
C55APS.exe if you have the full version of the Application Broker) in the
C:\CWICWEB\ directory.

Note: For this tutorial, we will use the executable version of the
Application Broker. The ISAPI version works in a similar
manner, with a few differences. These are discussed in the
Application Broker chapter.

5. Start your favorite browser.

Next, test the Application Broker and your TCP/IP setup using the
Localhost loopback method:

CHAPTER 7 TUTORIAL—MAKING A WEB APPLICATION 127

6. On the Browser’s URL line, type:
http://localhost/btest.htm

or
http://127.0.0.1/btest.htm

then press ENTER.

Note: If you have the broker set to a port other that port 80, you must
add that to the domain portion of the URL. For example:

 http://localhost:8080/btest.htm
or
 http://127.0.0.1:8080/btest.htm

If the test Web page displays correctly, you have the application broker
installed and running correctly. If not, you should return to the previous
chapter and reconfigure your setup.

Note: When using the ISAPI version of the broker, you would use
this URL to start the test page:

 http://localhost/cwpub/btest.htm
or
 http://yourdomain.com/cwpub/btest.htm

Next, start the application in the browser:

7. On the Browser’s URL line, type:
http://localhost/exec/webtutor/weborder.exe.0

or
http://127.0.0.1/exec/webtutor/weborder.exe.0,

then press ENTER.

128 CLARION 5.5 INTERNET APPLICATIONS USER’S GUIDE

Note: If you have the broker set to a port other that port 80, you must
add that to the domain portion of the URL. For example:

http://localhost:8080/exec/WebTutor/WebOrder.exe.0

Congratulations! Your first Web application is running.

Now you can explore this new application and compare it to the manner in
which it runs under Windows. You will notice that there are some minor
differences between the two, because of the platform, but it will look and
feel very much the same.

8. When you are finished, click on the Exit hyperlink.

This closes the application. Notice the browser now displays a blue Web
page with a hyperlink to restart the application. This page is created by
the application broker automatically unless you specify a page to return
to on exit in the Global Internet Application Extension template.

Leave your browser open with the restart page displayed. You will use
this page to restart your application.

The rest of this chapter walks you through techniques for optimizing your
application for the Web platform. This will not only demonstrate some
features in the IBC templates, but will also show you how much power you
have when you finally do write your own code to provide some “non-
standard” functionality.

Continue on! You’ve only just skimmed the surface of Clarion Internet
Connect, and there’s a lot more!

CHAPTER 7 TUTORIAL—MAKING A WEB APPLICATION 129

Faster is Better—Optimizing your Application

The Web introduces one additional programming challenge—bandwidth
conservation. It is important to utilize all the methods available to reduce the
amount of data transmitted over the network. Many users connect to the Web
using a modem and telephone lines, which is a relatively slow network
connection.

Internet Connect is Designed to Conserve Bandwidth

Clarion Internet Connect was designed to conserve bandwidth. The Java
controls it creates most often update dynamically on the client browser
without the need to refresh the entire page. This form of “dynamic HTML”
requires only a small amount of data to be transmitted. This is known as a
Partial Refresh. When a page is partially refreshed, only the controls which
are enabled to accept updated data redisplay. Entry Controls, Java String
controls, Java Image controls, and Java Listboxes are usually enabled to
update dynamically.

For the same reason (bandwidth conservation) many controls trigger a Partial
Refresh. For example, selecting a new record in a listbox triggers a Partial
Refresh, allowing most controls to redisplay current data.

Partial Refresh versus Full Refresh

There are some instances, however, where a Partial Refresh is appropriate
but is not the default. Changing events to trigger a Partial Refresh instead of
a Full Refresh, where appropriate, is one of the best ways to optimize your
Web applications.

There are many cases when a Partial Refresh is appropriate but a Full
Refresh is the default. This is because the templates cannot anticipate every
possibility and must favor the safer Full Refresh instead of the faster Partial
Refresh.

For example, a multi-sorted list which has no additional controls populated
on the Tabs performs better if you use Individual Control Overrides to
specify a Partial Refresh when a new tab is selected. This will only change
the data in the listbox instead of replacing the entire page.

Let’s look at the application we just created.

1. Task-switch back to your browser.

2. CLICK on the restart hyperlink.

The WebOrder application appears inside the browser.

3. CLICK on the Browse Customer Information File hyperlink.

130 CLARION 5.5 INTERNET APPLICATIONS USER’S GUIDE

The Browse the Customer File “window” appears in the browser. Notice
that the window contains a listbox and two tabs. Clicking on a tab
changes the sort order of the list.

4. CLICK on each of the tabs and notice the behavior of the Web page.

You should have noticed that the entire page was replaced to redisplay
the list. This is the default behavior of sheets and tabs. In the next section
we will override this default behavior.

5. CLICK on the blue X button at the right end of the toolbar to close the
Browse window, then click on the Exit hyperlink to exit the application.

Leave your browser open with the restart page displayed. You will use
this to restart your application after making some changes.

Internet Procedure Extension Template

In this section, we will override the SHEET control’s default action to
optimize it for performance over the Web.

Starting Point:
You should have the weborder.app open in the Clarion
development environment .

1. In the Application Tree, select the Category tab.

This sorts the procedures by category. Notice there are four procedures
with category—Browse.

2. Highlight the BrowseCustomer procedure, then press the Properties
button.

This opens the Procedure properties window.

3. Press the Internet Options button.

4. Select the Controls Tab.

5. Highlight the Sheet control (?CurrentTab) in the Individual Control
Options list.

6. Press the Properties button, then select the Events tab.

7. Highlight the Accepted event, then press the Properties button.

Override the Default Full Refresh with Partial Refresh

1. Check the Override default action box, then select Partial page refresh
from the drop-down list.

CHAPTER 7 TUTORIAL—MAKING A WEB APPLICATION 131

2. Press the OK buttons on all the windows until you return to the
application tree (4 times).

3. Repeat these steps for the three other Browse procedures.

4. Choose Project ➤ Make (or press the Make button on the toolbar).

Your Web application is ready to deploy once again.

5. Open Windows Explorer (or Windows NT Explorer).

6. Copy Weborder.exe from the C:\C55\Examples\WebTutor directory to the
C:\CWICWEB\EXEC\WebTutor directory.

This time you need only deploy the application, the DLLs have not
changed.

Let’s run the application to see how the changes we made affect its behavior.

See the difference

1. Task-switch back to your browser.

2. Start the application in the browser by clicking on the Restart hyperlink.

3. CLICK on the Browse Customer Information File hyperlink.

4. CLICK on each of the tabs and notice the behavior of the Web page.

You should notice that the list now re-displays data without sending an
entire page.

5. Exit the application.

Leave your browser open with the restart page displayed. You will use
this to restart your application after making some changes.

132 CLARION 5.5 INTERNET APPLICATIONS USER’S GUIDE

Looks are Important—Adding Graphics

The Web has produced a colorful, enjoyable medium for computer users.
Many Web sites are designed to provide both content and an attractive
interface. Clarion Internet Connect has support for the most commonly used
methods of employing graphics and colors in Web pages.

In this section we will add a background image to the pages in which the
application’s windows appear. This provides a back-drop for the running
program and helps to visually indicate the portion that is the application and
the portion that is not.

This section of the tutorial is not intended to teach you page design or artistic
methods. Ths section is designed to show you how to use the template
interface to create the look-and-feel you want.

Internet Application Extension Template

First, we will add a background image:

Starting Point:
You should have the weborder.app open in the Clarion
development environment .

1. In the Application Tree, press the Global button.

This opens the Global Properties window.

2. Press the Extensions button.

This opens the Extensions and Control Templates window.

3. Highlight Internet Application Extension.

4. In the Page area, press the ellipsis (...) button next to Background
Image.

This opens the standard Windows file dialog.

5. Select Crumpled.gif, then press the OK button..

This adds a tiled image to the Web page background. The image is of a
crumpled piece of grey paper. Keep in mind that this image file will need
to be deployed.

6. In the Window area, press the ellipsis (...) button next to Background
Color.

This opens the standard Windows color dialog.

7. Select the Silver color, then press the OK button.

This adds a background color attribute to the HTML representation of
the application’s window. In addition to adding the color, this also
prevents the background image from showing through.

CHAPTER 7 TUTORIAL—MAKING A WEB APPLICATION 133

8. Press the OK button on the Extensions and Control Templates and the
Global Properties window.

Make, Deploy, and Run the Application

1. Choose Project ➤ Make (or press the Make button on the toolbar).

Your Web application is ready to deploy once again.

2. Open Windows Explorer (or Windows NT Explorer).

3. Copy Weborder.exe from the C:\C55\Examples\WebTutor directory to the
C:\CWICWEB\EXEC\WebTutor directory.

4. Copy Crumpled.gif from the C:\C55\Examples\WebTutor directory to the
C:\CWICWEB\Public directory.

5. Task-switch to your browser and restart the application. Notice the new
look.

In this chapter we learned how to make a new application and make some
basic changes to optimize it for performance and appearance when running
over the Web. In the next chapter, we will Web-enable an existing
application, so you can learn to publish any of your applications on the
Web.

134 CLARION 5.5 INTERNET APPLICATIONS USER’S GUIDE

CHAPTER 8 TUTORIAL—WEB-ENABLING AN EXISTING APPLICATION 135

8 - TUTORIAL— WEB-ENABLING AN

EXISTING APPLICATION

Porting an existing Clarion application to the Web is just as easy as creating
a new Web application.

In this chapter we will use WebTree.APP.

In this chapter, you will:

◆ Use the IBC templates to port an existing Clarion application to the Web.

◆ Compile and deploy the application, then run it in a browser.

◆ Learn about using Tree controls on the Web and deploying icons.

◆ Optimize the Tree display using techniques similar to those used in the
first tutorial.

This should all take about fifteen minutes. By the end of this chapter,
you’ll have a complete application for a simple order entry system using a
different interface than the application used in the first tutorial.

Let’s get started!

136 CLARION 5.5 INTERNET APPLICATIONS USER’S GUIDE

Using the Global Internet Application
Extension Template

Porting an Application to the Web

Starting Point:
You should have the Clarion development environment open.

This tutorial assumes that you installed Clarion in C:\C55 and the
Application broker in C:\CWICWEB. If you used a different directory, you
will have to modify the instructions accordingly.

Web-enabling a Clarion application

1. On the Pick dialog, press the Open... button.

This opens the Open dialog.

2. Select the Application tab.

3. Select the C:\C55\Examples\WebTutor directory from the Directories
list, select WebTree.app, then press the Open button.

This opens the Application Tree dialog.

4. In the Application Tree, press the Global button.

This opens the Global Properties window.

5. Press the Extensions button.

This opens the Extensions and Control Templates window.

6. Press the Insert button.

7. Highlight Internet Application Extension, then press the Select button.

This adds the Internet Application Extension template which
automatically adds the Internet Procedure Extension template to each
procedure in the application.

8. Press the OK button on the Extensions and Control Templates and the
Global Properties windows.

Change to 32-bit

1. In the Application Tree, press the Project button.

This opens the Project Editor window.

2. Press the Properties button.

This opens the Global Options dialog.

3. In the Target OS field, select Windows - 32-bit.

CHAPTER 8 TUTORIAL—WEB-ENABLING AN EXISTING APPLICATION 137

Web-enabled applications must be 32-bit.

4. Press the OK button on the Global Options and the Project Editor
windows.

That’s all it takes to Web-enable an existing application!

Make and Deploy

1. Choose Project ➤ Make (or press the Make button on the toolbar).

Your Web application is ready to deploy.

2. Press the OK button on the compile results window.

3. Open Windows Explorer (or Windows NT Explorer).

4. Copy WebTree.exe from the C:\C55\Examples\WebTutor directory to the
C:\CWICWEB\EXEC\WebTutor directory.

5. Copy all the icon files (*.ICO) from the C:\C55\Examples\WebTutor
directory to the C:\CWICWEB\Public directory.

These icons are used on the Toolbar buttons and in the Tree control. They
must be deployed to the \PUBLIC directory in order for the browser to
display them. The icons in the Standard toolbar which the earlier tutorial
application used are compiled into the Java classes and need not be
deployed.

Run the application

1. Start the Application Broker by DOUBLE-CLICKING on C55APS10.exe (or
C55APS.exe if you have the full version of the Application Broker) in the
C:\CWICWEB\ directory.

Note: As in the first tutorial, we will use the executable version of the
Application Broker. The ISAPI version works in a similar
manner, with a only few differences. These are discussed in the
Application Broker chapter.

2. Start your browser.

138 CLARION 5.5 INTERNET APPLICATIONS USER’S GUIDE

3. Next, start the WebTree.exe application in the browser.
(http://localhost/exec/webtutor/webtree.exe.0)

Examine the application

You should notice that this application looks a little different than the
previous application. It uses a toolbar but no menu. This is a common
interface in Web applications, so this technique bears demonstration here.

1. CLICK on the Orders button.

The Browse Customer Orders “window” appears in the browser.
Notice that the window contains a Tree control and two buttons to
Expand All and Contract All.

2. CLICK on the Expand All and Contract All buttons and notice the
behavior.

Notice that expanding and contracting the tree refreshes the entire page.
We will use the same partial refresh technique you learned in the first
tutorial to optimize this behavior.

3. Exit the application (by pressing the blue X).

Leave your browser open with the restart page displayed. You will use
this to restart your application after making some changes.

Overriding the default action

In this section, we will override the BUTTON control’s default action to
optimize it for performance over the Web.

Starting Point:
You should have the WebTree.APP open in the Clarion
development environment.

1. Highlight the BrowseCustomer procedure, then press the Properties
button.

This opens the Procedure properties window.

2. Press the Internet Options button.

3. Select the Controls Tab.

4. Highlight the Button control (?Expand) in the Individual Control
Options list.

5. Press the Properties button, then select the Events tab.

6. Highlight the Accepted event, then press the Properties button.

7. Check the Override default action box, then select Partial page refresh
from the drop-down list.

8. Press the OK buttons on the Events and Individual Overrides windows.

CHAPTER 8 TUTORIAL—WEB-ENABLING AN EXISTING APPLICATION 139

9. Highlight the Button control (?Contract) in the Individual Control
Options list.

10. Press the Properties button, then select the Events tab.

11. Highlight the Accepted event, then press the Properties button.

12. Check the Override default action box, then select Partial page refresh
from the drop-down list.

13. Press the OK buttons on all the windows until you return to the
application tree (4 times).

Make and Deploy

1. Choose Project ➤ Make (or press the Make button on the toolbar).

Your Web application is ready to deploy once again.

2. Press the OK button on the compiler window.

3. Open Windows Explorer (or Windows NT Explorer).

4. Copy Weborder.exe from the C:\C55\Examples\WebTutor directory to
the C:\CWICWEB\EXEC\WebTutor directory.

This time you need only deploy the application, the icons have not
changed.

Let’s run the application to see how the changes we made affect its behavior.

See the difference

1. Task-switch back to your browser.

2. Start the application in the browser by clicking on the Restart hyperlink.

3. CLICK on the Orders button again.

4. CLICK on the Expand All and Contract All buttons and notice the
behavior now.

You should notice that the tree now re-displays the Tree data without
sending an entire page.

140 CLARION 5.5 INTERNET APPLICATIONS USER’S GUIDE

5. Exit the application.

Congratulations. You are well on your way to developing Web applications.
In the next chapter, we will discuss some advanced options you have at your
disposal with Internet Connect.

CHAPTER 9 TUTORIAL—ADVANCED WEB PROGRAMMING TECHNIQUES 141

9 - TUTORIAL— ADVANCED WEB

PROGRAMMING TECHNIQUES

Now that you have learned how to create a Web application and how to port
an existing Clarion application to the Web, you have all the skills you need
to publish database applications on the Internet.

But, there is more you can do with Internet Connect. This chapter will show
you some of the advanced techniques you can use in your Web Applications.

For the rest of the tutorial, we will continue to use the WebTree example that
you used in the previous chapter.

In this chapter, you will:

◆ Add a Login window and use Cookies to “remember” a user’s login
name the next time the app is started.

◆ Use a Code Template to Embed Static HTML.

◆ Use a Code Template to Embed Dynamic HTML using a variable.

◆ Use an Internet Embed point to write conditional HTML Code.

◆ Password protect a procedure.

◆ Add a Web Splash window to inform first time users that the Java
Support Library is downloading.

◆ Use Embedded HTML to align an Image on the Web.

◆ Use Individual Control Options to ensure embedded source code is
executed over the web.

◆ Use embedded source code to restrict Edit-In-Place when running over
the web.

This should all take about thirty minutes. By the end of this chapter,
you’ll learn most of the methods available to customize of your Web
applications.

Let’s continue!

142 CLARION 5.5 INTERNET APPLICATIONS USER’S GUIDE

Using Cookies
In this section, we will add a login window to allow users to identify
themselves. The application will use cookies to store that name and
“remember” the login name. The next time the user starts the application, the
prompt will not appear.

Starting Point:
You should have the WebTree.app open in the Clarion
development environment.

This tutorial assumes that you installed Clarion in C:\C55 and the
Application broker in C:\CWICWEB. If you used a different directory, you
will have to modify the instructions accordingly.

Add a login procedure

1. In the Application Tree, highlight the Main procedure, then press the
Properties button.

This opens the Procedure Properties window.

2. Press the Embeds button.

This opens the Embedded Source window.

3. Highlight the embed point as shown below:

This point ensure that the LoginWindow is called before the window
opens.

4. Press the Insert button.

This opens the Select Embed Type window.

5. Highlight Call a Procedure, then press the Select button.

6. In the Procedure to call field, type LoginWindow, then press the OK
button.

7. Press the Close button on the Embedded Source window and the OK
button on the Procedure Properties window.

This adds the LoginWindow procedure as a ToDo item.

CHAPTER 9 TUTORIAL—ADVANCED WEB PROGRAMMING TECHNIQUES 143

Add the login window

1. In the Application Tree, highlight the LoginWindow procedure, then press
the Properties button.

This opens the Select Procedure Type window.

2. Highlight the Window-Generic Window Handler, then press the Select
button.

This opens the Procedure Properties window.

3. Press the Window button.

This opens the New Structure window.

4. Highlight Window, then press the OK button.

This opens the Window Formatter.

Design the login window

1. Select Populate ➤ Field.

This opens the File Schematic dialog.

2. In the Files list on the left, highlight Global Data, then in the Fields list
on the right, select LoginName, then press the Select button.

This variable was created for you in the example application.

3. CLICK on the window to populate the Prompt and Entry control.

4. Select Populate ➤ Control Template.

This opens the Select Control Template window.

5. Highlight CancelButton then press the Select button.

6. CLICK on the window to populate the Cancel button control.

7. Select Populate ➤ Control Template.

This opens the Select Control Template window.

8. Highlight CloseButton then press the Select button.

9. CLICK on the window to populate the Close button control.

10. Change the text of the the Close button control to OK.

144 CLARION 5.5 INTERNET APPLICATIONS USER’S GUIDE

11. Reposition the controls on the window as you see fit.

Add the “Cookie” code to save the LoginName

1. DOUBLE-CLICK on the OK button control to access the Embedded Source
points for the control.

2. Highlight the Control Events, ?Close, Accepted, Genertated Code
embed point then press the Insert button.

This inserts the code after any generated code for the control.

3. Select the SetCookie code template then press the Select button.

4. In the Cookie name field, type LoginName.

5. In the New Value field, type LoginName (or select the LoginName global
variable from the File schematic using the ellipsis button).

6. Press the OK button.

7. Press the Close button on the Embedded Source window.

CHAPTER 9 TUTORIAL—ADVANCED WEB PROGRAMMING TECHNIQUES 145

Add the “Cookie” code to get the LoginName

1. DOUBLE-CLICK on the window to access the Embedded Source points for
the window.

2. Highlight the embed point as shown below then press the Insert button.

3. Highlight Source then press the Select button.

4. Type in the source code below:
IF EVENT() = Event:NewPage !If the Web page new
LoginName = Broker.Http.GetCookie('LoginName') !Get the cookie
DISPLAY

END
 IF LoginName ! If value was set
 POST(Event:CloseWindow) ! close the window

END

This code “gets” a cookie when the window is active. If it sucessfully
retrieves a cookie and sets the LoginName variable, it closes the window
(before the user sees it).

This means a user only needs to login once, then the server “recognizes”
the user the next time around.

5. Exit the Source editor and save the changes.

6. Press the Close button on the Embedded Source window.

7. Exit the Window Formatter and save the changes.

8. Press the OK button on the Procedure Properties window.

Make and Deploy

1. Choose Project ➤ Make (or press the Make button on the toolbar).

Your Web application is ready to deploy.

2. Press the OK button on the compiler window.

3. Open Windows Explorer (or Windows NT Explorer).

4. Copy WebTree.exe from the C:\C55\Examples\WebTutor directory to the
C:\CWICWEB\EXEC\WebTutor directory.

146 CLARION 5.5 INTERNET APPLICATIONS USER’S GUIDE

Run the application

1. Start the Application Broker by DOUBLE-CLICKING on C55APS10.exe (or
C55APS.exe if you have the full version of the Application Broker) in the
C:\CWICWEB\ directory.

Note: As in the first tutorial, we will use the executable version of the
Application Broker. The ISAPI version works in a similar
manner, with a only few differences. These are discussed in
the Application Broker chapter.

2. Start your browser.

3. Start the WebTree application in the browser
(http://localhost/exec/webtutor/webtree.exe.0).

Examine the application

The first time you run the application. You are prompted to provide a login
name. The next time you run it, you are not prompted, because the system
reads your cookie and the value of the global variable is set to the value in
the cookie.

1. Type in a name when the Login screen appears then press OK .

2. Exit the application

3. Restart the WebTree application in the browser.

Notice that the second time, you are not prompted to log in.

4. Exit the application

Leave your browser open with the restart page displayed. You will use
this to restart your application after making some changes.

Let’s make another change to the application to display the user’s
LoginName using the Dynamic HTML code template.

CHAPTER 9 TUTORIAL—ADVANCED WEB PROGRAMMING TECHNIQUES 147

Embedding HTML
One of the most powerful features of the Internet Developer's Kit is the
ability to embed HTML code in the HTML pages which are output by the
Web-enabled application.

When you embed HTML code (using the special embed points added by the
Global Internet Application Extension template), it is inserted at the
specified location in the HTML returned to the browser which executed the
application.

Starting Point:
You should have the Clarion development environment open
and open the WebTree.app application.

Adding Dynamic HTML using a variable

We have written the code needed to set and retrieve a user’s login name and
store it in a global variable. Now we will display that name on the Web page
below the HTML representation of the window.

1. In the Application Tree, highlight the Main procedure, then press the
Properties button.

This opens the Procedure Properties window.

2. Press the Embeds button.

This opens the Embedded Source window.

3. Highlight the Internet-Before the Closing </BODY> tag embed point,
then press the Insert button.

This opens the Select Embed Type window.

4. Highlight Dynamic HTML, then press the Select button.

5. In the Dynamic Text field, type the following:
‘<<P>’ & CLIP(LoginName) & ‘ is logged in <</P>’

6. Press the OK button on the code template window.

7. Press the Close button on the Embedded Source window and the OK
button on the Procedure Properties window.

148 CLARION 5.5 INTERNET APPLICATIONS USER’S GUIDE

Make and Deploy

1. Choose Project ➤ Make (or press the Make button on the toolbar).

Your Web application is ready to deploy.

2. Press the OK button on the compiler window.

3. Open Windows Explorer (or Windows NT Explorer).

4. Copy WebTree.exe from the C:\C55\Examples\WebTutor directory to the
C:\CWICWEB\EXEC\WebTutor directory.

Examine the application

1. Restart the WebTree application in the browser (click on the Restart
hyperlink).

If you have already run the application on this machine, you will not be
prompted to Log In. Instead, the server reads your “cookie” and sets the
LoginName global variable to that value. The LoginName variable now
displays on the Web page below the toolbar buttons.

2. Exit the application.

Leave your browser open with the restart page displayed. You will use
this to restart your application after making some changes.

Let’s make some more changes to the application using Embedded HTML.

Adding Static HTML

In the last section, we added HTML code that was constructed using a
combination of text and variables. In this section we will use the Static
HTML code template to add HTML code that will remain static.

We will use this to add a link at the bottom of the page that will allow users
to Email the Webmaster with comments or questions about the application.

1. In the Application Tree, highlight the Main procedure, then press the
Properties button.

This opens the Procedure Properties window.

2. Press the Embeds button.

This opens the Embedded Source window.

3. Highlight the Internet-Before the Closing </BODY> tag embed point
and press the Insert button.

This opens the Select Embed Type window.

4. Highlight Static HTML, then press the Select button.

5. In the HTML to Insert box, type the following:
<P>Comments?</P>

CHAPTER 9 TUTORIAL—ADVANCED WEB PROGRAMMING TECHNIQUES 149

6. Press the OK button on the code template window.

7. Press the Close button on the Embedded Source window and the OK
button on the Procedure Properties window.

Make and Deploy

1. Choose Project ➤ Make (or press the Make button on the toolbar).

Your Web application is ready to deploy.

2. Press the OK button on the compiler window.

3. Open Windows Explorer (or Windows NT Explorer).

4. Copy WebTree.exe from the C:\C55\Examples\WebTutor directory to the
C:\CWICWEB\EXEC\WebTutor directory.

Examine the application

1. Restart the WebTree application in the browser (click on the Restart
hyperlink).

You will notice the new link. If you click on the link, your browser opens
your Email client with a new preaddressed message.

2. Exit the application.

Leave your browser open with the restart page displayed. You will use
this to restart your application after making some changes.

Adding conditional HTML in Clarion Source Code

A third method of inserting embedded HTML into your Web pages is by
using the Target.WriteLn method in embedded source code. This allows you
to use Clarion code to write the HTML code. One benefit of using Clarion
code is the ability to control the HTML code you want to write. In other
words, you can utilize the logical structures in the Clarion language to
control what is written. You can write one line or another using an
IF..THEN..ELSE clause, or a CASE structure.

We will use this technique to display a random advertisement on the bottom
of the page using an EXECUTE structure.

1. In the Application Tree, highlight the Main procedure, then press the
Properties button.

This opens the Procedure Properties window.

2. Press the Embeds button.

This opens the Embedded Source window.

3. Highlight the Internet-Before the Closing </BODY> tag embed point
then press the Insert button.

This opens the Select Embed Type window.

150 CLARION 5.5 INTERNET APPLICATIONS USER’S GUIDE

4. Highlight Source, then press the Select button.

5. In the Embedded Source editor, type the following source code:

Str1" = '<<A HREF="http://www.'
Str2" = '.com"><<IMG SRC="'
Str3" = '" BORDER=0><'

EXECUTE RANDOM(1,5)
 Target.WriteLn(CLIP(Str1") & 'softvelocity' & CLIP(Str2") & SELF.Files.GetAlias('1.GIF') &
Str3")
 Target.WriteLn(CLIP(Str1") & 'icetips' & CLIP(Str2") & SELF.Files.GetAlias('2.GIF') & Str3")
 Target.WriteLn(CLIP(Str1") & 'finatics' & CLIP(Str2") & SELF.Files.GetAlias('3.GIF') & Str3")
 Target.WriteLn(CLIP(Str1") & 'flpanthers' & CLIP(Str2") & SELF.Files.GetAlias('4.GIF') & Str3")
 Target.WriteLn(CLIP(Str1") & 'flamarlins' & CLIP(Str2") & SELF.Files.GetAlias('5.GIF') & Str3")
END

Note: You can copy and paste this text from chap4.txt in the
\webtutor directory.

6. Exit the Source editor and save the changes.

7. Press the Close button on the Embedded Source window and the OK
button on the Procedure Properties window.

Make and Deploy

1. Choose Project ➤ Make (or press the Make button on the toolbar).

Your Web application is ready to deploy.

2. Press the OK button on the compiler window.

3. Open Windows Explorer (or Windows NT Explorer).

4. Copy WebTree.exe from the C:\C55\Examples\WebTutor directory to the
C:\CWICWEB\EXEC\WebTutor directory.

5. Copy the GIF files (*.gif) from the C:\C55\Examples\WebTutor directory
to the C:\CWICWEB\Public directory.

Examine the application

1. Restart the WebTree application in the browser (click on the Restart
hyperlink).

You will notice the new image and link. Each time you start the
application, a random ad appears.

2. Exit the application.

Leave your browser open with the restart page displayed. You will use
this to restart your application after making some changes.

CHAPTER 9 TUTORIAL—ADVANCED WEB PROGRAMMING TECHNIQUES 151

Covering the Download with a Splash Window
In order for a browser to “run” a Web-enabled application, the Java Support
Library (JSL) must be available to the client browser. First-time users must
download either Clarion.CAB (for Microsoft Internet Explorer) or
Clarion.ZIP (for Netscape). In most browsers, the JSL is only downloaded
once and remains cached (until the user clears that cache). Although the JSL
is very compact for the degree of functionality it provides, it can still take
several minutes to download over a 28.8 modem. With that in mind, we will
use a “splash screen” window to alert first-time users that the download is in
progress. By placing a Java Button on that window, we can prevent users
from continuing until the JSL is downloaded and the Java button is
initialized.

1. In the Application Tree, highlight the Main procedure, then press the
Properties button.

This opens the Procedure Properties window.

2. Press the Embeds button.

This opens the Embedded Source window.

3. Highlight the embed point as shown below:

4. Press the Insert button.

This opens the Select Embed Type window.

5. Highlight Source, then press the Select button.

6. In the Embedded Source editor, type the following source code:
IF WebServer.Active THEN Splash.

This makes sure that the Splash procedure is only called when the
application is running over the Web.

7. Make sure this embed is listed before the call to the LoginWindow
procedure using the up or down button.

152 CLARION 5.5 INTERNET APPLICATIONS USER’S GUIDE

This ensures that the Splash procedure is called before any other window
opens.

8. Press the Close button on the Embedded Source window.

9. Press the Procedures button.

This opens the Procedure window.

10. Highlight Splash, then press the OK button.

This connects the Splash procedure to the Main procedure in the
Application Tree. This is necessary if your application is using Local
MAPs.

Changing the BUTTON to a Java Button

The Splash window contains some text, a button, and an IMAGE control.
The BUTTON was populated as a CloseButton control template with the text
changed to Continue. Since the button is created as an HTML button by
default, you will specify otherwise. We want it to be a Java button so that it
will not be available to the end user until the JSL has downloaded.

1. In the Application Tree, highlight the Splash procedure, then press the
Properties button.

2. Press the Internet Options button.

3. Select the Controls tab.

4. Highlight ?Close in the Individual Control Options list, then press the
Properties button.

5. Select the Classes tab.

6. Check the Override default Class box, then select
theWebJavaButtonClass from the Class Name drop-down list.

CHAPTER 9 TUTORIAL—ADVANCED WEB PROGRAMMING TECHNIQUES 153

7. Press the OK button.

Leave the Internet Optionswindow open. We will use it in the next section.

Centering the Image on the Splash window

The Splash window’s IMAGE control is positioned so that is is centered
horizontally in the window. This portion of the tutorial will add some HTML
code to ensure that the IMAGE remains centered when running over the
Web.

1. Highlight ?Image1 in the Individual Control Overrides list, then press
the Properties button.

2. Select the HTML tab.

This window allows you to enter HTML code before and after a control.
This HTML code only affects the control when running over the Web.

3. In the HTML before control box, type:
<CENTER>

4. In the HTML after control box, type:
</CENTER>

5. Press the OK buttons on all the windows until you return to the
Application Tree (3 times).

Make and Deploy

1. Choose Project ➤ Make (or press the Make button on the toolbar).

Your Web application is ready to deploy.

2. Press the OK button on the compiler window.

3. Open Windows Explorer (or Windows NT Explorer).

4. Copy WebTree.exe from the C:\C55\Examples\WebTutor directory to the
C:\CWICWEB\EXEC\WebTutor directory.

Examine the application

1. Restart the WebTree application in the browser (click on the Restart
hyperlink).

You will notice the Splash window now appears before any other
window.

2. Exit the application.

Leave your browser open with the restart page displayed. You will use
this to restart your application after making some changes.

154 CLARION 5.5 INTERNET APPLICATIONS USER’S GUIDE

Using Partial Refresh to Update Controls
In Windows applications, programmers often embed code to update one
control when the value of another control changes. For example, you might
embed code to change the total of a line item when the quantity of items
changes. The Webtree application has code like this in the UpdateItems
procedure. The embedded code is tied to the EVENT:Accepted on each
control. In other words, when the user changes the value in a control and tabs
off it or selects another control with a mouse click, the code is executed.

When an application runs over the Web, ENTRY controls are processed on
the browser by default. In other words, there is no interaction between the
browser and the server application—unless you change the event handling
options for that control. In this section, you will change the action for three
controls to ensure that embedded code is executed on the server for an
Event:Accepted for these controls.

1. In the Application Tree, highlight the UpdateItems procedure, then press
the Properties button.

This opens the Procedure Properties window.

2. Press the Internet Options button.

3. Select the Controls tab.

4. Highlight ?ITEM:ProdCode in the Individual Control Options list, then
press the Properties button.

5. Select the Events tab.

6. Highlight Accepted, then press the Properties button.

7. Check the Override default action box, then select thePartial page
refresh from the Action on Event drop-down list.

8. Press the OK buttons on all the windows until you return to the Internet
Options window (twice).

CHAPTER 9 TUTORIAL—ADVANCED WEB PROGRAMMING TECHNIQUES 155

9. Repeat the last 5 steps for ?ITEM:Quantity and ?ITEM:Price.

10. Press the OK buttons on all the windows until you return to the
Application Tree (twice).

Make and Deploy

1. Choose Project ➤ Make (or press the Make button on the toolbar).

Your Web application is ready to deploy.

2. Press the OK button on the compile results window.

3. Open Windows Explorer (or Windows NT Explorer).

4. Copy WebTree.exe from the C:\C55\Examples\WebTutor directory to the
C:\CWICWEB\EXEC\WebTutor directory.

Examine the application

1. Restart the WebTree application in the browser (click on the Restart
hyperlink).

2. Press the Orders button.

3. Press the Expand All button.

4. Highlight one of the line itens (the green lines).

5. Press the Change button

6. Change the amount in the Quantity Field, then press TAB.

Notice the Extended Total changes. If you change the Price field or
Product Code, the Extended Total also changes.

7. Exit the application.

Leave your browser open with the restart page displayed. You will use
this to restart your application after making some changes.

156 CLARION 5.5 INTERNET APPLICATIONS USER’S GUIDE

Restricting Access to a Procedure
For the next part of the tutorial we will restrict access to a procedure using
the browser’s built-in authentication support and the Internet Procedure
Extension template’s password protection capabilities. When a password
protected procedure is called, the browser's authentication window displays.
You do not need to create a window to collect login information. Password
protection is based on an area, a username and a password. The “area” is the
protected procedure.

The browser prompts the user for a user name, and a password. These are
then sent to the program for validation. If the program accepts the password
(i.e., it RETURNs TRUE from the WebWindow.ValidatePassword method), the
new page is displayed, otherwise the browser prompts again. After three
attempts the browser displays a message informing the user that access is
denied. This page automatically returns the user to the last active place in the
program after a few seconds.

Note: If the page has already been visited in the current session the
browser will normally supply the user name and the password
without prompting the user. This feature is built-in to most
browsers.

There are a few methods of password protection (see Using Passwords in the
Web Application Design Considerations chapter). We will use the more
advanced method—to override the WebWindow.ValidatePassword method.

Starting Point:
You should have the Clarion development environment open
and open the WebTree.app application.

Password Protection

To implement password protection that is validated against a data file, you
must add the validation file to the file schematic, add the password challenge
in the Procedure Extension template, and override the
WebWindow.ValidatePassword method with your validation code.

Add the Validation File

1. In the Application Tree, highlight the UpdateProducts procedure, then
press the Properties button.

This opens the Procedure Properties window.

2. Press the Files button.

This opens the File Schematic window.

CHAPTER 9 TUTORIAL—ADVANCED WEB PROGRAMMING TECHNIQUES 157

3. Highlight the Other Files, then press the Insert button.

This opens the Select File window.

4. Highlight Userlist, then press the Select button.

5. Press the OK button on the File Schematic window.

Add the Password Challenge

1. Press the Internet Options button.

2. Select the Advanced Tab.

3. Check the Restrict access to this procedure box.

4. Press the OK button.

5. Press the Embeds button.

This opens the Embedded Source window.

6. Highlight the Internet- Password Validation Code Section embed point
then press the Insert button.

This opens the Select Embed Type window.

By entering code into the Internet- Password Validation Code Section
embed point you are overriding the default method for password
validation.

158 CLARION 5.5 INTERNET APPLICATIONS USER’S GUIDE

This embed point generates inside a method with two parameters:
UserName and Password, which it receives from the browser. The
method should return TRUE if the password is valid, and FALSE if it is
not valid. This allows you to look up the information in a file, or use any
other method you choose to validate the password.

7. Highlight Source, then press the Select button.

8. In the Embedded Source editor type the following source code:
USE:UserID = UserName
IF Access:UserList.Fetch(USE:KeyUserID) !lookup UserName in file
 RETURN(False)
END
IF USE:UserPassword = Password !Check the password
 RETURN(True)
ELSE
 RETURN(False)
END

9. Exit the Source editor and save the changes.

10. Press the Close button on the Embedded Source window and the OK
button on the Procedure Properties window.

Make and Deploy

1. Choose Project ➤ Make (or press the Make button on the toolbar).

Your Web application is ready to deploy.

2. Press the OK button on the compile results window.

3. Open Windows Explorer (or Windows NT Explorer).

4. Copy WebTree.exe from the C:\C55\Examples\WebTutor directory to the
C:\CWICWEB\EXEC\WebTutor directory.

Examine the application

1. Restart the WebTree application in the browser (CLICK on the Restart link).

2. Press the Products button.

3. Press the Insert button to add a new product.

The Browser’s authentication window appears.

4. In the UserName field, type Fred.

5. In the Password field, type Wilma.

The values you entered are in the Userlist file. This file was precreated
with two users. Note that there is no procedure in this application to edit
this file. This is a common method of handling user password files where
only a system administrator has permission to add users. Feel free to
create procedures to update this file as you see fit.

6. Exit the application.

CHAPTER 9 TUTORIAL—ADVANCED WEB PROGRAMMING TECHNIQUES 159

Restricting Edit-In-Place
The ABC Templates in Clarion allow you to enable Edit-In-Place with a
single checkbox. This feature, however, is not supported when running over
the Web. Over the Web, you must have a separate Form for updates. There is
a simple method to alternate between edit-in-place when running locally in
Windows and calling a form when running over the Web.

If you enable Edit-In-Place and specify an update procedure with the
BrowseBox control template, you have two-thirds of your work done. The
template generated code either calls a separate update procedure or does
edit-in-place depending on the value of the BRWn.AskProcedure property. Set
the BRWn.AskProcedure property to 0 (zero) and you have Edit-in-Place; Set it
to 1 (One) and you call the update procedure.

To use Edit-in-place for local Windows and a form when running over the
Web:

1. Select the BrowseProducts procedure, then press the Properties button.

2. In the UpdateButton section of the Procedure Properties window,
check the Use Edit in Place box.

Notice that an update procedure is already specified. Make sure to leave
that procedure named.

Next, embed the code to set the update action to call Edit-in-Place when
running in Windows and call the form when running over the Web.

3. Press the Embeds button.

This opens the Embedded Source window.

4. Highlight the embed point as shown below then press the Insert button.

5. Highlight Source, then press the Select button.

6. In the Embedded Source editor, type the following source code:
IF WebServer.Active
BRW1:AskProcedure = 1

END

7. Exit the Source editor and save the changes.

8. Press the Close button on the Embedded Source window and the OK
button on the Procedure Properties window.

160 CLARION 5.5 INTERNET APPLICATIONS USER’S GUIDE

Make and Deploy

1. Choose Project ➤ Make (or press the Make button on the toolbar).

Your Web application is ready to deploy.

2. Press the OK button on the compile results window.

3. Open Windows Explorer (or Windows NT Explorer).

4. Copy WebTree.exe from the C:\C55\Examples\WebTutor directory to the
C:\CWICWEB\EXEC\WebTutor directory.

Examine the application

1. Restart the WebTree application in the browser (click on the Restart
hyperlink).

2. Press the Products button.

3. Press the Insert button to add a new product.

The Browser’s authentication window appears.

4. In the UserName field, type Fred. In the Password field, type Wilma.

Notice that the Update Products form appears.

5. Exit the application.

6. Run the application under Windows.

7. Press the Products button.

8. Press the Insert button to add a new product.

Notice that Edit-In-Place is now enabled.

9. Exit the application.

Congratulations! You have sucessfully completed the tutorial portion of this
manual. You should have enough experience now to create robust Web
database applications.

The rest of the book explains the IBC Templates, the IBC Library, and
application design tips and techniques. Read on.

CHAPTER 10 THE INTERNET BUILDER CLASS TEMPLATES 161

10 - THE INTERNET BUILDER CLASS

TEMPLATES

This chapter covers the Internet Builder Class (IBC) Templates in the
Internet Developer’s Kit. These templates are designed to work with both of
the template chains included in Clarion (ABC and Clarion). For the most
part, the IBC Templates work in the same manner when used with either
template chain. The differences are noted in the section where those
differences appear.

The IBC Templates are made up of a single Global Application extension
template, a procedure template, and several code templates.

The Global Internet Application Extension template automatically adds the
Procedure extension template to every procedure in the application. This
allows you to Web-enable an entire application in a single step.

The combination of global and procedure level settings provides
customization capabilities at either level. To make a setting application-
wide, you set a Global option. To specify an option for a single procedure,
you make the setting for that procedure. Many of the Global and Procedure
settings are the same; the only difference is the scope of the setting.

The Global Internet Application Extension
Template

The Global Internet Application Extension Web-enables a Clarion
application. It adds the functionality of generating dynamic HTML when the
application is accessed through the Application Broker. This template allows
you to specify the options to use when generating an HTML representation
of your windows and reports.

In addition, it automatically adds the Internet Procedure Extension to every
procedure in your application and any procedures subsequently added to the
application. The Procedure extension allows you to override many of the
global options for a specific procedure.

This template allows you to customize the appearance and behavior of your
application when it is executed over the Web. The settings you specify here
are global in nature; that is, they affect every procedure in your application.

162 CLARION 5.5 INTERNET APPLICATIONS USER’S GUIDE

You can override most of these settings on a procedure level using the
Internet Procedure Extension’s settings. In addition, some options can be
specified on a control-by-control basis. The combination of these three levels
of customization provides you with complete flexibility of design.

Note: None of these settings affect your application when running
locally as a Windows executable.

Page Settings

When run over the Web, an application’s current window is displayed inside
an HTML page (a Web page). The page settings allow you to specify a
background color or background image for the HTML page. The template
generated code calls the WebWindow.SetPageBackground method to set these
properties.

Center Window on Page
Check this box to center the HTML representation of your
window inside the Web page. This adds <CENTER></CENTER>
HTML tags to the Web page.

Background color
You can specify the color to use for the Web page. Specify a
Color, a color equate, or select a color from the
COLORDIALOG by pressing the ellipsis (...) button. The
default is no color (the equate is COLOR:NONE). This means
that the browser's default page color is used.

Background image
You can specify an image to display as the background for the
Web page. Specify an image filename or select a file from a
FILEDIALOG by pressing the ellipsis (...) button. The default is
no image.

Window Settings

When run over the Web, an application’s current window is represented by
an HTML <TABLE>. This allows you to set <TABLE> properties such as
background color and border width. The prompts on this tab allow you to
specify the appearance of the “window” (<TABLE>) portion of the HTML
page. The template generated code calls the WebWindow.SetBackground method
to set these properties.

Background color
You can specify the color to use for your application’s window.
Specify a Color, a color equate, or select a color from the
COLORDIALOG by pressing the ellipsis (...) button. The
default is no color (the equate is COLOR:NONE). This means
that the background color of the application’s window is used.

CHAPTER 10 THE INTERNET BUILDER CLASS TEMPLATES 163

Tip: You can also set colors for discrete parts of the window, such
as the toolbar. See Window Component Options.

Background image
You can specify an image to display as the background for your
application’s window. Specify an image filename or select a file
from a FILEDIALOG by pressing the ellipsis (...) button. The
default is no image.

Tip: A background image tiles (i.e., it repeats as many times as its
size allows) inside an HTML <TABLE> cell representing the
application’s window. Provide a small image that tiles to save
bandwidth.

Window border width
Specify the border width for your application’s window. The
default is 2, which makes a thin border. Specify a 0 border
width to display no border. The template generated code calls
the WebWindow.SetBorderWidth method to set the property.

Help

Enable Help for internet applications
Check this box to enable links from Help buttons in your
application. (A Help button is a BUTTON with the STD:Hlp
attribute). If Help is enabled, a Help button will call a Web page
based on the Help ID of the current window. This document is
opened in a Browser window named “_HELP” which will cause
a new browser window to open or if a frame already has that
name, it displays the Help document inside that frame. The
template generated code uses the WebWindow.SetHelpDocument
method or the WebWindow.SetHelpURL method to set the properties
you specify. You are responsible for creating the corresponding
HTML pages. See Implementing Help in your Web Application.

URL of Help documents
The base location of the HTML files for your Help. For
example, your HTML Help files are located in a separate
subdirectory.

Help Window Style
You can optionally supply a style for your Help window.

Help Ids are links within a base document
If your Help is designed as a single document with mid-page
anchors, check this box. If not checked, the Help buttons
reference individual HTML pages.

164 CLARION 5.5 INTERNET APPLICATIONS USER’S GUIDE

Help Document
The base document containing the mid-page anchors. This field
is enabled only when the Help Ids are links within a base
document box is checked.

Window Components

Press this button to specify the appearance of the window’s components
(e.g., TOOLBAR, MENU, and Caption areas). See Window Component
Options.

Control

The prompts on this tab allow you to set the defaults for generating the
HTML code that represents each of your application’s controls.

Tip: In addition to the settings here, you can set control options for
individual controls in the procedure template’s Internet
Options. See Individual Overrides for a Control.

General

If control disabled
Specifies what to display on the browser when a window control
is disabled. This option is provided because most HTML
controls do not support disabling. This sets the
WebWindow.DisabledAction property.The choices are:

 Hide
Hides any disabled controls (the default).

Hide if cannot disable
Hides any disabled control when it cannot be
disabled on the Web page. Most HTML controls
cannot be disabled.

Show Displays any disabled controls. It appears normally
(i.e., it will appear to be enabled), but changes made
to the control will not affect the underlying
application.

Drop listboxes

Replace with Java non-drop list
Allows you to replace a drop-down list with a page-loaded Java
Listbox. If your drop-down lists need to display more than one
column, use this option.

Sheets

CHAPTER 10 THE INTERNET BUILDER CLASS TEMPLATES 165

Border width
Specify the border width for SHEET controls. The default is 2,
which makes a thin border. Specify a 0 border width to display
no border. This sets the WebWindow.SheetBorderWidth property.

Options

Border width
Specify the border width for OPTION controls. This only
applies to OPTIONs with the BOXED attribute. The default is
2, which makes a thin border. Specify a 0 border width to
display no border. This sets the WebWindow.OptionBorderWidth
property.

Groups

Border width
Specify the border width for GROUP controls. This only applies
to GROUPs with the BOXED attribute. The default is 2, which
makes a thin border. Specify a 0 border width to display no
border. This sets the WebWindow.GroupBorderWidth property.

MDI

This section determines the manner in which Application Menus and
Toolbars are handled.

Tip: For control over specific Menu or Toolbar items, set the MDI
overrides in the Frame Procedure’s Internet Options.

Frame Menu

This section determines the manner in which Application Menus are
handled. This allows you to specify which global menu options are displayed
on “child” windows.

Include on Child Windows
Select an option from the drop-down list. The choices are:

All Menu Items All menu choices appear on child windows.

No Menu Items No menu choices appear on child windows.

Ignore code in frame’s ACCEPT loop
Check this box to ignore any code in the Application Frame’s
ACCEPT loop for menu items. If not checked, any embedded
code implemented in the Frame’s ACCEPT loop is automatically
implemented in the child procedure.

166 CLARION 5.5 INTERNET APPLICATIONS USER’S GUIDE

Frame Toolbar

This section determines the manner in which Application Toolbar controls
are handled. This allows you to specify which global Toolbar controls are
displayed on “child” windows.

Include on Child Windows
Select an option from the drop-down list. The choices are:

All Toolbar Items
All Toolbar items appear on child windows.

Standard Toolbar Only
Only the Standard Toolbar items appear on child
windows. These are the buttons added by the
FrameBrowseControl template.

No Toolbar Items
No Toolbar items appear on child windows.

Ignore code in frame’s ACCEPT loop
Check this box to ignore any code in the Application Frame’s
ACCEPT loop for toolbar items. If not checked, any embedded
code implemented in the Frame’s ACCEPT loop is automatically
implemented in the child procedure.

Advanced

Horizontal Pixels per Char
The number of pixels to consider for a character’s width when
calculating the size to create Java applets and Images.

Vertical Pixels per Char
The number of pixels to consider for a character’s height when
calculating the size to create Java applets and Images.

Note: The numbers specified affect the overall appearance of the
generated HTML page. For example, increasing the value of
Vertical Pixels per Char will make the HTML Table cells taller.

Delta for grid snapping
The number of pixels to consider before repositioning a control.
Specify a value for X and a value for Y. Any time a control is
within this range, it is not repositioned.

Page to return to on exit
Optionally, specify the HTML page to return to when the
program ends. The template generated code calls the
WebServer.Init method to set the WebServer.PagetoReturnTo
property.

CHAPTER 10 THE INTERNET BUILDER CLASS TEMPLATES 167

Time out (seconds)This specifies the maximum amount of idle time
(measured in seconds) before an application closes. The default
is 600 seconds (10 minutes). The template generated code calls
the WebServer.Init method to set the WebServer.TimeOut property.

Sub directory for pages
The directory in which the application creates temporary
directories (a temporary directory is made for each active
connection) to write the dynamic HTML and graphic files. This
is also the directory in which to deploy graphic files. If you
provide a graphic in this directory, it is not extracted and written
to the temporary directory. This defaults to /PUBLIC. The
template generated code calls the WebFilesManager.Init method
to set the property. It is not appropriate to set this property at
runtime.

Classes Local to Application Broker
This specifies that the Java Support Library files are located in
the /PUBLIC directory below the broker directory. If you are
using multiple servers, you may want a single source from which
these files are to be retrieved. In that case, you would clear the
checkbox and designate the URL for the Java Support Library
files. This sets the WebServer.JavaClassPath property.

Use Long Filenames
Check this box to allow long filnames to be created on the Web
server.

Classes

The Classes Tab lets you specify which classes (objects) the Templates use to
accomplish various tasks, and the source modules that contain the class
definitions. This approach gives you the capability to use as much of the IBC
Library as you want and as much of your own classes as you want.

To change the class for an item or override the class, highlight it in the list,
then press the Properties button.

The Internet Builder Class Library Reference (on CD in .PDF format) is a
complete guide to the classes used by the IBC templates. It provides
descriptions of all the classes, methods, and properties with examples for
each.

See Also: Class Overrides, Global Window Component Options

168 CLARION 5.5 INTERNET APPLICATIONS USER’S GUIDE

Global Window Component Options

Caption

This is the area at the top of the “window” in the HTML page. This is the
portion representing the title bar.

Include caption
Check this box to display the Caption. If not checked, the
caption is not used. This sets the WebWindow.CreateCaption
property.

Background color
You can specify the color to use for the Caption area. Specify a
Color, a color equate, or select a color from the
COLORDIALOG by pressing the ellipsis (...) button. The
default is Navy Blue (the equate is COLOR:Navy). If no color is
specified here and you specified a Window background color in
Window settings above, that color is used. If neither is specified
and the application’s WINDOW has a COLOR attribute, that
color is displayed in the browser. The template generated code
calls the WebCaption.SetBackground method to set this property.

Background image
You can specify an image to display as the background for the
Caption area. Specify an image filename or select a file from a
FILEDIALOG by pressing the ellipsis (...) button. The default is
no image. The template generated code calls the
WebCaption.SetBackground method to set this property.

Tip: A background image tiles (i.e., it repeats as many times as its
size allows) inside an HTML <TABLE> cell representing the
application’s window caption area. Provide a small image that
tiles to save bandwidth.

Alignment
You can control the alignment of the text in the caption area. The
choices are Left, Center, or Right justification. The default is
Center. This sets the WebCaption.Alignment property.

Font family name
This allows you to specify the typeface to display. Keep in mind
that the browser can only display fonts which are installed on the
client’s machine. However most operating systems support font
substitution and will display the closest matching font. The
default is none which uses the browser’s default font. The
template generated code calls the WebCaption.SetFont method to
set this property.

Font size
Optionally, specify the point size for the Font displayed in the

CHAPTER 10 THE INTERNET BUILDER CLASS TEMPLATES 169

caption area. The default is none which uses the browser’s
default font size. The template generated code calls the
WebCaption.SetFont method to set this property.

Font color
You can specify the Font’s color for the Caption area. Specify a
Color, a color equate, or select a color from the
COLORDIALOG by pressing the ellipsis (...) button. The
default is white (the equate is COLOR:White).

Menu

This is the menu area at the top or side of the “window” in the HTML page.

Background color
You can specify the color to use for the Menu area. Specify a
Color, a color equate, or select a color from the
COLORDIALOG by pressing the ellipsis (...) button. If no color
is specified here and you specified a Window background color
in Window settings above, that color is used. If neither is
specified and the application’s WINDOW has a COLOR
attribute, that color is displayed in the browser. The template
generated code calls the WebMenubar.SetBackground method to set
this property.

Background image
You can specify an image to display as the background for the
Menu area. Specify an image filename or select a file from a
FILEDIALOG by pressing the ellipsis (...) button. The default is
no image. The template generated code calls the
WebMenubar.SetBackground method to set this property.

Tip: A background image tiles (i.e., it repeats as many times as its
size allows) inside an HTML <TABLE> cell representing the
application’s menu area. Provide a small image that tiles to
save bandwidth.

Alignment
You can control the position of the menu. The choices are Above
Toolbar (the default), Left of Window, or below the Toolbar.
When you use Above Toolbar, the menu is spread horizontally
across the top of the HTML page. When you use Below the
Toolbar, the menu is spread horizontally across the the HTML
page under the Toolbar area. When you use Left of Window, the
menu is spread Vertically to the left of the <TABLE>
representing the application’s window.

170 CLARION 5.5 INTERNET APPLICATIONS USER’S GUIDE

ToolBar

This is the toolbar area at the top of the “window” in the HTML page (below
the caption area).

Background color
You can specify the color to use for the Toolbar area. Specify a
Color, a color equate, or select a color from the
COLORDIALOG by pressing the ellipsis (...) button. If no color
is specified here and you specified a Window background color
in Window settings above, that color is used. If neither is
specified and the application’s WINDOW has a COLOR
attribute, that color is displayed in the browser. The template
generated code calls the WebToolbar.SetBackground method to set
this property.

Background image
You can specify an image to display as the background for the
Toolbar area. Specify an image filename or select a file from a
FILEDIALOG by pressing the ellipsis (...) button. The default is
no image. The template generated code calls the
WebToolbar.SetBackground method to set this property.

Create extra close button
Specifies when to provide a Close button for a window. This
button is in addition to any other buttons on the window. It is
provided to replace the System Close button automatically
provided by Windows but not automatically provided by a
browser. If your windows all have close buttons, you do not need
to provide an extra one. The choices are:

Never Never creates an extra Close button.

If window has system menu and no visible buttons
Creates a Close button only when the WINDOW has
a SYSTEM attribute and no other BUTTONs.

If window has system menu
Creates a Close button only when the WINDOW has
a SYSTEM attribute

Always Always creates a Close button.

Image for close
Specifies the icon to display for the Close button. Specify an
icon filename or select a file from a FILEDIALOG by pressing
the ellipsis (...) button. The default is EXIT.ICO, a small blue X,
(distributed with Clarion).

CHAPTER 10 THE INTERNET BUILDER CLASS TEMPLATES 171

Client Area

This is the area of the “window” in the HTML page representing the
application’s client area.

Background color
You can specify the color to use for your application’s client
area. Specify a Color, a color equate, or select a color from the
COLORDIALOG by pressing the ellipsis (...) button. If no color
is specified here and you specified a Window background color
in Window settings above, that color is used. If neither is
specified and the application’s WINDOW has a COLOR
attribute, that color is displayed in the browser. The template
generated code calls the WebClientArea.SetBackground method to
set this property.

Background image
You can specify an image to display as the background for your
application’s client area. Specify an image filename or select a
file from a FILEDIALOG by pressing the ellipsis (...) button.
The default is no image. The template generated code calls the
WebClientArea.SetBackground method to set this property.

Tip: A background image tiles (i.e., it repeats as many times as its
size allows) inside an HTML <TABLE> cell representing the
application’s client area. Provide a small image that tiles to
save bandwidth.

Class Overrides

Override default class
To override the IBC class, check this box and specify the Class
Name, Header file (.INC), and Implementation file (.CLW) in
the fields below.

Class Name
Specify the name of the class to use or the default class name if
you wish to override the default class.

Header file
Specify a header file (the file containing the Class declarations)
or select a file from a FILEDIALOG by pressing the ellipsis (...)
button.

Implementation file
Specify an implementation file (the file containing the Class
definitions or or source code) or select a file from a
FILEDIALOG by pressing the ellipsis (...) button.

172 CLARION 5.5 INTERNET APPLICATIONS USER’S GUIDE

Internet Procedure Extension Template
This template allows you to customize the appearance and behavior of a
procedure when it is executed over the Web. The settings you specify here
are local in nature, that is they affect only this procedure. To change Global
Settings: press the Global Button on the Application Generator, then press
the Extensions button, and modify the settings for the Internet Application
Extension.

To modify the settings, press the Internet Options button on the Procedure
Properties window.

Note: None of these settings affect the way your application works
when running locally as a Windows executable.

Page Settings

When run over the Web, an application’s window is displayed inside an
HTML page (a Web page). The page settings allow you to specify a
background color or background image for the HTML page. The template
generated code calls the WebWindow.SetPageBackground method to set these
properties.

Override Global settings
Check this box to override the Page settings in the Internet
Application Global Extension template. Checking this box
enables the other prompts.

Center Window on Page
Check this box to center the HTML representation of your
window inside the Web page. This adds <CENTER></
CENTER> HTML tags to the Web page.

Background color
You can specify the color to use for the Web page. Specify a
Color, a color equate, or select a color from the
COLORDIALOG by pressing the ellipsis (...) button. The
default is no color (the equate is COLOR:NONE). This means
that the browser's default page color is used.

Background image
You can specify an image to display as the background for the
Web page. Specify an image filename or select a file from a
FILEDIALOG by pressing the ellipsis (...) button. The default is
no image.

CHAPTER 10 THE INTERNET BUILDER CLASS TEMPLATES 173

Window Settings

When run over the Web, an application’s window is represented by an
HTML <TABLE>. The prompts on this tab allow you to specify the
appearance of the “window” portion of the HTML page which displays when
running the application over the Web.

Override Global settings
Check this box to override the Window settings in the Internet
Application Global Extension template. Checking this box
enables the other prompts.

Background color
You can specify the color to use for your application’s window.
Specify a Color, a color equate, or select a color from the
COLORDIALOG by pressing the ellipsis (...) button. The
default is no color (the equate is COLOR:NONE), this means
that the background color of the application’s window is used.
The template generated code calls the WebWindow.SetBackground
method to set this property.

Background image
You can specify an image to display as the background for your
application’s window. Specify an image filename or select a file
from a FILEDIALOG by pressing the ellipsis (...) button. The
default is no image. The template generated code calls the
WebWindow.SetBackground method to set this property.

Tip: A background image tiles (i.e., it repeats as many times as its
size allows) inside an HTML <TABLE> cell representing the
application’s window. Provide a small image that tiles to save
bandwidth.

Window border width
Specify the border width for your application’s window. The
default is 2, which makes a thin border. Specify a 0 border width
to display no border.

Help

Override Global settings
Check this box to override the Help settings in the Internet
Application Global Extension template. Checking this box
enables the other prompts.

URL of Help documents
The base location of the HTML files for your Help. For
example, your HTML Help files are located in a separate
subdirectory.

174 CLARION 5.5 INTERNET APPLICATIONS USER’S GUIDE

Help Window Style
You can optionally supply a style for your Help window

Help Ids are links within a base document
If your Help is designed as a single document with mid-page
anchors, check this box. If not checked, the Help buttons
reference individual HTML pages.

Help Document
The base document containing the mid-page anchors. This field
is enabled only when the Help Ids are links within a base
document box is checked.

Window Components

Press this button to specify settings to specify the appearance of the
window’s components (e.g., TOOLBAR, MENU, and Caption areas). These
settings override any corresponding Global settings. See Procedure Window
Component Options.

Return if launched from browser
Closes the procedure when executed over the Web. This
effectively disables Web access to the procedure.

Controls

To Override Global settings:
Check the box to the left of an option to override the control
settings in the Internet Application Global Extension template.
Checking this box enables the prompt for that option.

General

If control disabled
Specifies what to display on the browser when a window control
is disabled. This option is provided because most HTML
controls do not support disabling. This sets the
WebWindow.DisabledAction property.The choices are:

 Hide Hides any disabled controls (the default).

Hide if cannot disable
Hides any disabled control when it cannot be
disabled on the Web page. Most HTML controls
cannot be disbled.

Show Displays any disabled controls. It appears normally
(i.e., it will appear to be enabled), but changes made
to the control will not affect the underlying
application.

CHAPTER 10 THE INTERNET BUILDER CLASS TEMPLATES 175

Drop listboxes

Replace with Java non-drop list
This allows you to replace a drop-down list with a page-loaded
Java Listbox. If your drop-down lists need to display more than
one column, use this option.

Sheets

Border width
Specify the border width for SHEET controls. The default is 2,
which makes a thin border. Specify a 0 border width to display
no border. This sets the WebWindow.SheetBorderWidth property.

Options

Border width
Specify the border width for OPTION controls. This only
applies to OPTIONs with the BOXED attribute. The default is 2
for a thin border. Specify a 0 border width to display no border.
This sets the WebWindow.OptionBorderWidth property.

Groups

Border width
Specify the border width for GROUP controls. This only applies
to GROUPs with the BOXED attribute. The default is 2, which
makes a thin border. Specify a 0 border width to display no
border. This sets the WebWindow.GroupBorderWidth property.

To override the
Global setting, check

the box

176 CLARION 5.5 INTERNET APPLICATIONS USER’S GUIDE

Individual Control Overrides

This section allows you to override the appearance or behavior of individual
controls in the window. Highlight the control to modify and press the
Properties button. See Individual Overrides for a Control.

MDI

This section determines the manner in which Application Menus and
Toolbars are handled.

Tip: For control over specific Menu or Toolbar items, set the MDI
overrides in the Frame Procedure’s Internet Options.

Merge Frame Menu
Check this box to Merge the Frame’s Menu when running this
procedure.

Merge Frame Toolbar
Check this box to Merge the Frame’s Toolbar when running this
procedure.

For a Frame Procedure, you have additional options. See Frame Procedure
MDI Options.

Advanced

Formatting

Override Global settings
Check this box to override the formatting settings in the Internet
Application Global Extension template. Checking this box
enables the other prompts.

Horizontal Pixels per Char
The number of pixels to consider for a character’s width when
calculating the size to create Java applets and Images.

Vertical Pixels per Char
The number of pixels to consider for a character’s height when
calculating the size to create Java applets and Images.

Delta for grid snapping
The number of pixels to consider before repositioning a control.
Specify a value for X and a value for Y. Any time a control is
within this range, it is not repositioned.

Note: The numbers specified affect the overall appearance of the
generated HTML page. For example, increasing the value of
Vertical Pixels per Char will make the HTML Table cells taller.

CHAPTER 10 THE INTERNET BUILDER CLASS TEMPLATES 177

Security

Transfer over a secure connection
If checked, data is transmitted using a Secure Socket Layer
(SSL). This allows secure transactions on a procedure level.
Keep in mind that encryption has a marked effect on
performance. You should only enable security for procedures
which transmit sensitive data.

Note: This feature requires installation of the secure version of the
Application Broker. See the Application Broker chapter.

Restrict Access to this procedure
Check this box to password protect the procedure and enable the
two fields below.

Password
Specify a password or select a variable from the file schematic
by pressing the ellipsis (...) button. A static password provides
simple protection. For more information, see Using Passwords .

Case Sensitive
Check this box to enforce case sensitive validation of the
password. If the box is not checked, case is ignored.

Window refresh

Show progress window
This controls the window associated with a Report or Process
procedure. It is not available for other procedure types. Check
this box to display the window associated with the Report
Procedure when running over the Web. If not checked, the
window is ignored. If the window in a Report Procedure
contains a Pause Button control template, the box is checked and
cannot be changed. In a Process procedure, the box is checked
and cannot be changed. This makes sure the window displays.

Time between refresh
Specify the number of seconds between each refresh.

Action on Timer
Specify the action to perform when the timer event is reached.
The choices are:

Partial Page refresh
Redisplays Java controls and HTML entry controls
to reflect current data.

Submit page Sends data to server application and redraws page
as instructed by the server application

Complete Page refresh
Redraws the entire page.

178 CLARION 5.5 INTERNET APPLICATIONS USER’S GUIDE

Enable Refresh on timer
Check this box to refresh the entire page or only the page data
based on a timer. A TIMER attribute on a WINDOW is
independant of this setting. This setting is used on the Web and
the TIMER attribute is used when the application runs under
Windows.

Tip: This feature should be used sparingly to ensure minimal
network traffic.

Time between refresh
Specify the number of seconds between each refresh.

Action on Timer
Specify the action to perform when the timer event is reached.
The choices are:

Partial Page refresh
Redisplays Java controls and HTML entry controls
to reflect current data.

Submit page Sends data to server application and redraws page
as instructed by the server application

Complete Page refresh
Redraws the entire page.

CHAPTER 10 THE INTERNET BUILDER CLASS TEMPLATES 179

Individual Overrides for a Control
The prompts for individual control overrides change based on the type of
control and its attributes. Every possible override is listed here with the
conditional options noted.

Override Global settings
Check the box to the left of an option to override the control
settings in the Internet Application Global Extension template.
Checking this box enables the other prompts.

Display

If control disabled
Specifies what to display on the browser when a window control
is disabled. This option is provided because most HTML
controls do not support disabling. This sets the
IC:CurControl.DisabledAction property.The choices are:

 Hide Hides any disabled controls (the default).

Hide if cannot disable
Hides any disabled control when it cannot be
disabled on the Web page. Most HTML controls
cannot be disbled.

Show Displays any disabled controls. It appears normally
(i.e., it will appear to be enabled), but changes made
to the control will not affect the underlying
application.

Hide if launched from browser
Check this box to hide the control when the application is run
over the Web. This allows you to disable display of some data or
remove some functionality for the Web version of your
application without removing it from the Windows version.

Autospot Hyperlinks
This option is available for LIST and STRING controls. If
checked, any data displayed which contains a valid hyperlink
(i.e., those beginning with http:, https:, ftp:, mailto:, news:,
telnet:, wais:, or gopher:) is made into a hyperlink jump.

Allow dynamic updates
This option is available for STRING controls. If checked, the
string control is created on the HTML page as a Java string
control which updates whenever a partial page update occurs.

180 CLARION 5.5 INTERNET APPLICATIONS USER’S GUIDE

Note: STRING controls with a variable as the USE attribute
automatically become Java String controls and do not need
this override option. This is only appropriate for a static
STRING which changes by a property assignment (e.g.,
?String1{PROP:Text} = ‘New Text’).

Image Options

Update Image dynamically
This option is available for IMAGE controls. If checked, the
control is created on the HTML page as a Java Image control
which updates whenever a partial page update occurs.

Note: IMAGE controls with a variable as the USE attribute
automatically become Java Image controls and do not need
this override option. This is only appropriate for a static IMAGE
which changes by a property assignment (e.g.,
?Image1{PROP:Text} = ‘New.gif’).

Alternative text
Optionally provide alternative text to display while the image is
loading. This is added to the HTML IMG ALT= tag. Alternative
text displays while the graphic file is transferred to browser
(before the image displays) or instead of the image if the user
disables image display in the browser’s preferences.

Border width
This option is available for SHEET, OPTION (if boxed) and
GROUP (if boxed) controls. Specify the border width for the
control. The default is 2, which makes a thin border. Specify a 0
border width to display no border.

HTML

One of the most powerful features of the IBC Templates is the ability to
embed HTML code in the HTML pages which are output by the Web-
enabled application. This feature allows you to add any HTML code at
points before or after any control on the resulting Web page. This code does
not affect the application when it is running as a Windows executable.

Using Embedded HTML, you can write any HTML code supported by the
browser. You can insert your own custom JavaScript, Java applets, ActiveX
controls, Shockwave files, or other objects.

Optionally, you can check the Remove Default HTML generation box to
supress generation of HTML for the control.

See also: Embedding HTML.

CHAPTER 10 THE INTERNET BUILDER CLASS TEMPLATES 181

Events

This tab allows you to override the default event handling for a control. This
tab is only available for controls which generate events.

Every control has a default action. This determines how its events are
processed. For example, a command button’s default action is to submit the
page to the server application and return a fresh Web page.

The ability to override the default event handling when the application is
executed in a browser allows you to optimize the application for the Web
environment and ensure that all of your embedded code is executed at the
time you expect it to. For example, an entry control’s events are processed on
the browser by default. This means that any code on the Event:Accepted for
an entry control is not executed until the page is submitted by a command
button or other control that submits a page. Using Individual control
overrides, you can specify a partial refresh on an Entry Control’s Accepted
event and embedded code executes as it would when running locally (under
Windows).

By default, most controls which allow data entry have their events
processed on the browser. This means your embedded code would not
execute at the expected time (e.g., code in the Event:Accepted embed point
for a control would not execute until the OK button submitted the page). This
section allows you to override the Browser’s event handling.

To override a control’s event handling, highlight the event and press the
Properties button.

Override default action
Check this to override the default action for the control event.
Checking this box enables the other prompts.

Action on Event
Select the action to perform when the event occurs. The choices
are:

Process on Browser
Allows event handling to be handled locally on the
browser.

Partial page refresh
Specifies that all Java Controls and HTML Entry
controls should receive and display updated data.

Complete page refresh
Replaces the entire page.

182 CLARION 5.5 INTERNET APPLICATIONS USER’S GUIDE

Classes

The Classes Tab lets you specify which classes (objects) the Templates use to
accomplish various tasks, and the source modules that contain the class
definitions. This approach gives you the capability to use as much of the IBC
Library as you want and as much of your own classes as you want.

To change the class for an item or override the class, highlight it in the list,
then press the Properties button.

Override default class
To override the IBC class, check this box and specify the Class
Name, Header file, and Implementation file in the fields below.

Class Name
Specify the name of the class to use or the default class name if
you wish to override the default class.

If you choose another class from the IBC Library, you do nto
need to specify a Header or Implementation file.

Header file
Specify a header file (the file containing the Class declarations)
or select a file from a FILEDIALOG by pressing the ellipsis (...)
button.

Implementation file
Specify an implementation file (the file containing the Class
definitions or or source code) or select a file from a
FILEDIALOG by pressing the ellipsis (...) button.

CHAPTER 10 THE INTERNET BUILDER CLASS TEMPLATES 183

Procedure Window Component Options

Caption

This is the area at the top of the “window” in the HTML page.

Override Global settings
Check this box to override the Caption settings in the Internet
Application Global Extension template. Checking this box
enables the other prompts.

Include caption
Check this box to display the Caption. If not checked, the
Caption is not used.

Background color
You can specify the color to use for the Caption area. Specify a
Color, a color equate, or select a color from the
COLORDIALOG by pressing the ellipsis (...) button. The
default is Navy Blue color (the equate is COLOR:Navy). If no
color is specified and the application’s WINDOW has a COLOR
attribute, that color is displayed in the browser. The template
generated code calls the WebCaption.SetBackground method to set
this property.

Background image
You can specify an image to display as the background for the
Caption. Specify an image filename or select a file from a
FILEDIALOG by pressing the ellipsis (...) button. The default is
no image. The template generated code calls the
WebCaption.SetBackground method to set this property.

Tip: A background image tiles (i.e., it repeats as many times as its
size allows) inside an HTML <TABLE> cell representing the
application’s window caption area. Provide a small image that
tiles to save bandwidth.

Alignment
You can control the alignment of the text in the caption area. The
choices are Left, Center, or Right justification. The default is
Center.

Font family name
This allows you to specify the typeface to display. Keep in mind
that the browser can only display fonts which are installed on the
client’s machine.

Font size
Optionally, specify the point size for the Font displayed in the

184 CLARION 5.5 INTERNET APPLICATIONS USER’S GUIDE

caption Area. The default is no size specified, which uses the
browser’s default font size.

Font color
You can specify the Font’s color for the Caption area. Specify a
Color, a color equate, or select a color from the
COLORDIALOG by pressing the ellipsis (...) button.

Menu

This is the menu area at the top or side of the “window” in the HTML page.

Override Global settings
Check this box to override the Menu settings in the Internet
Application Global Extension template. Checking this box
enables the other prompts.

Background color
You can specify the color to use for the Menu area. Specify a
Color, a color equate, or select a color from the
COLORDIALOG by pressing the ellipsis (...) button. The
template generated code calls the WebMenubar.SetBackground
method to set this property.

Background image
You can specify an image to display as the background for the
Menu area. Specify an image filename or select a file from a
FILEDIALOG by pressing the ellipsis (...) button. The default is
no image. The template generated code calls the
WebMenubar.SetBackground method to set this property.

Tip: A background image tiles (i.e., it repeats as many times as its
size allows) inside an HTML <TABLE> cell representing the
application’s menu area. Provide a small image that tiles to
save bandwidth.

Alignment
You can control the position of the menu alignment. The choices
are Above Toolbar (the default) or Left of Window.

Toolbar

This is the toolbar area at the top of the “window” in the HTML page (below
the caption area).

Override Global settings
Check this box to override the Toolbar settings in the Internet
Application Global Extension template. Checking this box
enables the other prompts.

CHAPTER 10 THE INTERNET BUILDER CLASS TEMPLATES 185

Background color
You can specify the color to use for the Toolbar area. Specify a
Color, a color equate, or select a color from the
COLORDIALOG by pressing the ellipsis (...) button. The
template generated code calls the WebToolbar.SetBackground
method to set this property.

Background image
You can specify an image to display as the background for the
Toolbar area. Specify an image filename or select a file from a
FILEDIALOG by pressing the ellipsis (...) button. The default is
no image. The template generated code calls the
WebToolbar.SetBackground method to set this property.

Tip: A background image tiles (i.e., it repeats as many times as its
size allows) inside an HTML <TABLE> cell representing the
application’s toolbar area. Provide a small image that tiles to
save bandwidth.

Close button

Override Global settings
Check this box to override the Close button settings in the
Internet Application Global Extension template. Checking this
box enables the other prompts.

Create extra close button
Specifies when to provide a Close button for a window.

Image for close
Specify the icon to display for the Close button. Specify an icon
filename or select a file from a FILEDIALOG by pressing the
ellipsis (...) button. The default is exit.ico (distributed with
Clarion for Windows).

Client Area

This is the area of the “window” in the HTML page representing the
application’s client area.

Override Global settings
Check this box to override the Client Area settings in the Internet
Application Global Extension template. Checking this box
enables the other prompts.

Background color
You can specify the color to use for the application’s client area.
Specify a Color, a color equate, or select a color from the
COLORDIALOG by pressing the ellipsis (...) button. The
template generated code calls the WebClientArea.SetBackground
method to set this property.

186 CLARION 5.5 INTERNET APPLICATIONS USER’S GUIDE

Background image
You can specify an image to display as the background for your
application’s client area. Specify an image filename or select a
file from a FILEDIALOG by pressing the ellipsis (...) button.
The default is no image. The template generated code calls the
WebClientArea.SetBackground method to set this property.

Tip: A background image tiles (i.e., it repeats as many times as its
size allows) inside an HTML <TABLE> cell representing the
application’s client area. Provide a small image that tiles to
save bandwidth.

CHAPTER 10 THE INTERNET BUILDER CLASS TEMPLATES 187

Frame Procedure MDI Options

Application Menu

Override Global settings
Check this box to override the Menu MDI settings in the Internet
Application Global Extension template. Checking this box
enables the other prompts.

Include on Child Windows
Select the option from the drop-down list. The choices are:

Global Setting Menu choices appear on child windows as specified
in the Global options.

All Menu Items All menu choices appear on child windows.

No Menu Items No menu choices appear on child windows.

Selected Menu Items
Allows you to select individual menu options from
the list below.

Ignore code in frame’s ACCEPT loop
Check this box to ignore any embedded code in the Application
Frame’s ACCEPT loop for menu items.

Application Toolbar

This section determines the manner in which Application Toolbar controls
are handled. This allows you to specify which global Toolbar controls are
displayed on “child” windows.

Override Global settings
Check this box to override the Toolbar MDI settings in the
Internet Application Global Extension template. Checking this
box enables the other prompts.

Include on Child Windows
Select the option from the drop-down list. The choices are:

Global Setting Toolbar controls appear on child windows as
specified in the Global options.

All Toolbar Items
All Toolbar items appear on child windows.

188 CLARION 5.5 INTERNET APPLICATIONS USER’S GUIDE

Standard Toolbar Only
Only the Standard Toolbar items appear on child
windows.

No Toolbar Items
No Toolbar items appear on child windows.

Selected Toolbar Items
Allows you to select individual Toolbar items from
the list below.

Ignore code in frame’s ACCEPT loop
Check this box to ignore any embedded code in the Application
Frame’s ACCEPT loop for toolbar items.

CHAPTER 10 THE INTERNET BUILDER CLASS TEMPLATES 189

Code Templates

Dynamic HTML Code Template

This code template allows you to insert dynamic HTML code in any of the
Internet embed points. This template is only available for Embed points
which can write to the delivered HTML page at runtime.

You can specify any valid Clarion expression in the entry box. Any variables
used in the expression will use the current value at the time the HTML code
is written.

Note: When creating your expression to write HTML code, you must
handle special characters, such as <, by using two characters
in succession.

This template uses the Target.WriteLn method to write the value of the
expression to the delivered HTML page.

See also: Embedding HTML

Static HTML Code Template

This code template allows you to insert static HTML code in any of the
Internet embed points. This template is only available for Embed points
which can write to the delivered HTML page at runtime.

You can specify any valid HTML code in the entry box.

This template uses the Target.WriteLn method to write the HTML code to the
delivered HTML page.

Note: If you use the Static HTML Code Template, special characters
are handled automatically.

See also: Embedding HTML

190 CLARION 5.5 INTERNET APPLICATIONS USER’S GUIDE

GetCookie Code Template

This template allows you to retrieve a cookie from the client’s machine.

Cookie Name
Provide a name for the cookie. This is the name used in the
SetCookie Code template to write the cookie. If the cookie does
not exist, a null value is assigned to the Variable to Set.

Variable to Set
Select a variable from the file schematic by pressing the ellipsis
(...) button. The value of the cookie is assigned to the variable.

See also: SetCookie Code Template, Cookies (Persistent Client Data)

SetCookie Code Template

This template allows you to set a cookie on the client’s machine for later
retrieval.

Cookie Name
Provide a name for the cookie. This is the name to use in the
GetCookie Code template to retrieve the cookie. If a cookie of
the same name exists, it is overwritten.

New Value
Specify a value or select a variable from the file schematic by
pressing the ellipsis (...) button. This value is assigned to the
cookie.

See also: GetCookie Code Template, Cookies (Persistent Client Data)

Cookies (Persistent Client Data)

Cookies are a method for Web servers to both store and retrieve information
on the client side of the connection. This allows a server to store data on the
client’s machine and retrieve it later.

A server can send a piece of data to the client (browser) which the client
stores locally. This is known as a cookie (the name has no known origin).
Cookies contain a range of URLs for which it is valid. Later, when the client
returns to a URL within that range, the server can query the cookie and use
that data. A server cannot retrieve information from other servers (i.e., a
server cannot query a cookie that is out of its domain range).

This mechanism is similar to the INI file storage and retrieval paradigm in
Windows (GETINI and PUTINI) and provides a method for identifying user

CHAPTER 10 THE INTERNET BUILDER CLASS TEMPLATES 191

preferences, and other data. For example, an application which requires a
user to provide their name before entering can use a cookie to avoid the
Login process after the first visit.

Note: Cookies are machine specific so a client who accesses a site
from more than one machine will need to provide the cookie
information once for each machine so a cookie is stored on
the machine. In addition, cookies are browser specific, so a
client who uses more than one browser, will need to set and
get cookies for each browser.

Your Web-enabled applications can use cookies to store user preferences
such as the default city and state for new records. These settings can be
retrieved the next time the user runs the application over the Web.

See also: GetCookie Code Template, SetCookie Code Template

AddServerProperty Code Template

This template allows you to set the value of the specified outgoing http item
in the HTTP header.

Property Name
Provide the property name to set.

Property Value
Select a variable from the file schematic by pressing the ellipsis
(...) button. The value of the variable is assigned to the property.

See Also : GetServerProperty Code Template

GetServerProperty Code Template

This template allows you to get the value of the specified http item in the
HTTP header.

Property Name
Provide a name for the HTTP property. If the HTTP field does
not exist, a null value is assigned to the Variable to Set.

Variable to Set
Select a variable from the file schematic by pressing the ellipsis
(...) button. The value of the property is assigned to the variable.

See Also : SetServerProperty Code Template

192 CLARION 5.5 INTERNET APPLICATIONS USER’S GUIDE

CHAPTER 11 WEB APPLICATION DESIGN CONSIDERATIONS 193

11 - WEB APPLICATION DESIGN

CONSIDERATIONS

Most common Windows application design rules apply to Web application
design. It is equally important to provide a consistent, understandable
interface under either platform.

Keep in mind that the Web “platform” is not Windows. Your interface should
be intuitive for users on all supported platforms. The Java controls in the
Java Support Library are intuitive, but you may want to provide a brief
explanation of how they work in your application to facilitate their use.

Bandwidth Usage Considerations
The web introduces one additional programming challenge—bandwidth
conservation. It is important to keep your windows simple and utilize all the
methods available to reduce the amount of network traffic. This section
provides some pointers, but is by no means complete. It is intended to give
you food for thought while designing applications.

Use Partial Refresh whenever possible

The use of a Partial Refresh, where appropriate, is the best way to optimize
your Web applications.

There are many times when a partial refresh is appropriate but a full refresh
is the default. This is necessary because the templates cannot anticipate every
possibility. For example, a multi-sorted list which has no controls populated
on the Tabs performs better if you use Individual Control Overrides to
specify a Partial refresh when a tab is selected. This will only change the
data in the listbox instead of replacing the entire page.

To override a SHEETs behavior for the example above, follow these steps:

1. From the Procedure Properties window, press the Internet Option
button.

2. Select the Controls Tab.

3. Highlight the Sheet control in the Individual Control Options list
(the wizard generated SHEETs are usually called ?CurrentTab).

194 CLARION 5.5 INTERNET APPLICATIONS USER’S GUIDE

4. Press the Properties button, then select the Events tab.

5. Highlight the Accepted event, then press the Properties button.

6. Check the Override default action box, then select Partial page refresh
from the drop-down list.

7. Press the OK buttons on all the windows to save and exit.

One other aspect of Partial Refresh is its use to Update Controls over the
Web. In Windows applications, programmers often embed code to update
one control when the value of another control changes. For example, you
might embed code to change the total of a line item when the quantity of
items changes. The Webtree tutorial application has code like this in the
UpdateItems procedure. The embedded code is tied to the EVENT:Accepted
on each control. In other words, when the user changes the value in a control
and tabs off it or selects another control with a mouse click, the code is
executed.

When an application runs over the Web, ENTRY controls are processed on
the browser by default. In other words, there is no interaction between the
browser and the server application—unless you change the event handling
options for that control. If you want to update controls over the Web, change
the action for controls to ensure that embedded code is executed on the
Event:Accepted.

Be frugal with controls

Populate as few controls as necessary on a window. This is good practice in
Windows application design and is even more important in a browser/server
implementation

When using listboxes, populate as few controls in the list as needed to
uniquely identify a record for a user. This reduces the amount of data sent to
fill the list. If you want to display more data for each record, you can
populate hotfields next to the listbox and they will update as the user scrolls.

Use graphics sparingly

This is a common rule for web design. You should limit the number of
graphics to ensure rapid page loading. In addition, you should reduce the file
size as much as possible to further save bandwidth usage. Many graphics
utilities have tools to adjust graphics files for web usage.

CHAPTER 11 WEB APPLICATION DESIGN CONSIDERATIONS 195

Covering the Download with a Splash Window

In order for a browser to “run” a Web-enabled application, the Java Support
Library (JSL) must be available to the client browser. First-time users must
download either Clarion.CAB (for Microsoft Internet Explorer) or
Clarion.ZIP (for Netscape). In most browsers, the JSL is only downloaded
once and remains cached (until the user clears that cache). Although the JSL
is very compact for the degree of functionality it provides, it can still take
several minutes to download over a 28.8 modem. With that in mind, you may
want to use a “splash screen” window to alert first-time users that the
download is in progress. By placing a Java Button on that window, you can
prevent users from continuing until the JSL is downloaded and the Java
button is initialized.

Create the Window and Change the BUTTON to a Java Button

Create a procedure using the Window Procedure template. These instructions
assume you have named your procedure-Splash. This window should
contains some text and a Close Button control template. You can change the
text on the BUTTON to Continue. Since the button is created as an HTML
button by default, you should specify that you want it to be a Java button so
that it will not be available until the JSL has downloaded.

1. In the Application Tree, highlight the new procedure, then press the
Properties button.

2. Press the Internet Options button.

3. Select the Controls tab.

4. Highlight the close button control template (the default name is ?Close)
in the Individual Control Options list, then press the Properties button.

5. Select the Classes tab.

6. Check the Override default Class box, then select
theWebJavaButtonClass from the Class Name drop-down list.

196 CLARION 5.5 INTERNET APPLICATIONS USER’S GUIDE

7. Press the OK button.

Call the procedure before opening the Application Frame

1. In the Application Tree, highlight the Main procedure, then press the
Properties button.

This opens the Procedure Properties window.

2. Press the Embeds button.

This opens the Embedded Source window.

3. Highlight the embed point as shown below:

4. Press the Insert button.

This opens the Select Embed Type window.

5. Highlight Source, then press the Select button.

6. In the Embedded Source editor, type the following source code:
IF WebServer.Active THEN Splash.

This makes sure that the Splash procedure is only called when the
application is running over the Web.

7. Make sure this embed is listed before the call to any other procedure
using the up or down button.

CHAPTER 11 WEB APPLICATION DESIGN CONSIDERATIONS 197

This ensures that the Splash procedure is called before any other window
opens.

8. Press the Close button on the Embedded Source window and the OK
button on the Procedure Properties window.

9. Press the Procedures button.

This opens the Procedure window.

10. Highlight Splash, then press the OK button.

This connects the Splash procedure to the Main procedure in the
Application Tree. This is necessary if your application is using Local
MAPs.

198 CLARION 5.5 INTERNET APPLICATIONS USER’S GUIDE

Cosmetic Design Considerations

Using Groups

When you populate a GROUP on a WINDOW, control declaration
statements do not necessarily end up inside the GROUP structure. This may
cause an HTML representation that does not look like the original window.
Make sure the controls you want inside the GROUP are actually inside the
GROUP structure.

In the first example below (Badwind), the control declaration statements are
all outside the GROUP structure. This window displays fine in Windows
because the AT attribute values control the position and size of the GROUP
box. When running over the Web, the GROUP box is an HTML <TABLE>
cell and is controlled by its contents.

Badwind WINDOW('Caption'),AT(,,260,120),GRAY
 GROUP('Customer Info'),AT(5,9,205,102),USE(?Group1),BOXED
 END
 PROMPT('Customer:'),AT(11,28),USE(?CUST:Name:Prompt)
 ENTRY(@s30),AT(61,26)USE(CUST:Name),LEFT,REQ
 PROMPT('Address:'),AT(15,47),USE(?CUST:Address:Prompt)
 ENTRY(@s30),AT(61,45),USE(CUST:Address),LEFT
 PROMPT('City:'),AT(29,69),USE(?CUST:City:Prompt)
 ENTRY(@s20),AT(61,67),USE(CUST:City),INS
 PROMPT('State:'),AT(25,88),USE(?CUST:State:Prompt)
 ENTRY(@s2),AT(61,86),USE(CUST:State),LEFT,UPR

END

In the second example (Goodwind), the control declaration statements are
within the GROUP structure (i.e., between the GROUP and END statements)
and will display as expected when run over the Web.

Goodwind WINDOW('Caption'),AT(,,260,120),GRAY
GROUP('Customer Info'),AT(5,9,205,102),USE(?Group1),BOXED
PROMPT('Customer:'),AT(11,28),USE(?CUST:Name:Prompt)
ENTRY(@s30),AT(61,26)USE(CUST:Name),LEFT,REQ
PROMPT('Address:'),AT(15,47),USE(?CUST:Address:Prompt)
ENTRY(@s30),AT(61,45),USE(CUST:Address),LEFT
PROMPT('City:'),AT(29,69),USE(?CUST:City:Prompt)
ENTRY(@s20),AT(61,67),USE(CUST:City),INS
PROMPT('State:'),AT(25,88),USE(?CUST:State:Prompt)
ENTRY(@s2),AT(61,86),USE(CUST:State),LEFT,UPR

END
END

CHAPTER 11 WEB APPLICATION DESIGN CONSIDERATIONS 199

Using Images

Java Image controls update automatically when the value of its source
variable changes (i.e., whenever a partial page update occurs). To use this
feature for an IMAGE which changes by a property assignment (e.g.,
?Image1{PROP:Text} = ‘New.gif’), use Individual Control Overrides for the
Image Control and specify to update dynamically.

Graphic files used by IMAGE controls are extracted to the temporary
runtime directory for the connection unless they are found in the /PUBLIC
directory. The runtime library will extract files of various types, but most
browsers only support GIF and JPG formats. Therefore, you should limit the
graphic formats of IMAGE controls in a web-enabled application to those
two types. You could also choose to hide an IMAGE which uses a format not
supported by browsers using Individual Control Overrides. If an IMAGE is
based on a file that is not linked in, you should deploy the image file to the
application's directory.

You should provide alternative text for images (in Individual Control
Overrides). This is added to the HTML tag. Alternative text
displays while the graphic file is transferred to browser (before the image
displays) or instead of the image if the user disables image display in the
browsers preferences.

Icons used in LIST controls or on BUTTONs are not automatically extracted
and should be deployed to the /PUBLIC directory.

If you are referencing an image in HTML code, you must indicate the
location of the image file. If you are deploying under the EXE version of the
Application Broker you can prefix the filename with a leading forward slash
and deploy the image to the /PUBLIC directory. For example <IMG SRC="/
LOGO.GIF">. If you are using the ISAPI DLL version of the Application
Broker, you must use the SELF.FILES.GETAlias method to determine the virtual
path to the file. For example:

Target.WriteLN('<')

would find the mygif.gif file in any directory exposed to the server
application.

200 CLARION 5.5 INTERNET APPLICATIONS USER’S GUIDE

User Interface Design Considerations

MDI window access

Windows applications often use a Multiple Document Interface (MDI). This
allows several instances of an MDI child window to open. Each of these
Child windows is available and can receive focus using several navigation
methods (e.g., the Window menu). This is very convenient, but has some
implications when porting the application to the Web platform. A web page
in a browser is a single document, however, the underlying server application
can be an MDI application and allow multiple windows. Many windows
could be open on the server application, but the browser only displays the
current window. You should keep this in mind when designing your
application.

In a Web-enabled application, you can allow all menu and toolbar command
to be visible on child windows. This can be useful to allow a user to enter
different areas of the application without closing a child window to get to the
main menu or toolbar. This also has the potential pitfall of allowing a user to
open multiple instances of a procedure. Although only one will be visible at
a time, there could be several windows open. If there are two or more of the
same window open, it may appear to the user that the procedure did not close
when the Close button was pressed. For this reason, you should either restrict
access to the Global Menu/toolbar or limit each MDI procedure to a single
instance using Thread limiting code. One technique of limiting threads is
demonstrated in one of the standard Clarion Examples—EventMgr.APP.

Restricting Edit-In-Place

The ABC Templates in Clarion allow you to enable Edit-In-Place with a
single checkbox. This feature, however, is not supported when running over
the Web. Over the Web, you must have a separate Form for updates. There is
a simple method to alternate between edit-in-place when running locally in
Windows and calling a form when running over the Web.

If you enable Edit-In-Place and specify an update procedure with the
BrowseBox control template, you have two-thirds of your work done. The
template generated code either calls a separate update procedure or does
edit-in-place depending on the value of the BRWn.AskProcedure property. Set
the BRWn.AskProcedure property to 0 (zero) and you have Edit-in-Place; Set it
to 1 (One) and you call the update procedure.

To use Edit-in-place for local Windows and a form when running over the
Web:

1. Select the Browse procedure, then press the Properties button.

CHAPTER 11 WEB APPLICATION DESIGN CONSIDERATIONS 201

2. In the UpdateButton section of the Procedure Properties window,
check the Use Edit in Place box.

Notice that an update procedure is already specified. Make sure to leave
that procedure named.

Next, embed the code to set the update action to call Edit-in-Place when
running in Windows and call the form when running over the Web.

3. Press the Embeds button.

This opens the Embedded Source window.

4. Highlight the embed point as shown below then press the Insert button.

5. Highlight Source, then press the Select button.

6. In the Embedded Source editor, type the following source code:
IF WebServer.Active
BRW1:AskProcedure = 1

END

7. Press the Close button on the Embedded Source window

Unsupported Windows Standard Dialogs

There are certain Windows standard dialogs which are not appropriate for an
application running over the Web. Calling any of these will display a Not
Supported Message:

COLORDIALOG
FILEDIALOG
FONTDIALOG
PRINTERDIALOG

If you are calling any of these with a BUTTON control, use the Individual
Control Options to "Hide if launched from Browser." (Internet Options
Controls).

If you are calling the function in source code, enclose the function call inside
a conditional structure. For example:

IF NOT WebServer.Active ! Check if running over the web
 retval=COLORDIALOG() ! if not, call the colordialog
END

202 CLARION 5.5 INTERNET APPLICATIONS USER’S GUIDE

Using Command Line Parameters

If your application needs to receive command line parameters, you can pass
them on the browser's command line or via a hyperlink.

On the browser's location (URL) entry, specify the URL followed by the
executable name, followed by the dot zero (.0) followed by a question mark
and the parameter. For example,

HTTP://mydomain.com/myapp.exe.0?MyParameter

To handle the parameter in your application, you must interrogate the
WebServer.CommandLine property. If you are creating a hybrid application and
want to receive command line parameters from either Windows or the Web,
use code similar to the example below:

IF WebServer.Active !Check if running over the web
 PRE:MyField = WebServer.CommandLine !assign value to variable
ELSE !if it is running locally
 PRE:MyField = COMMAND('') !assign value to variable
END

Note: If you are passing multiple parameters, you must parse the
string to access the individual parameters.

Changing the Class for an individual control

At times, you may want to change a single control to use a different class
than the default. For example, a STRING control that displays a variable
defaults to a Java String control and you may want it to be plain HTML text.
You can change this on a control-by-control basis on the Individual Control
Overrides Classes Tab. In this example, you are not actually overriding the
class, but merely specifying a different class to use for the control.

1. From the Procedure Properties window, press the Internet Options
button.

2. Select the Controls tab.

3. Highlight the control in the Individual Control Options list, then press
the Properties button.

4. Select the Classes tab, and check the Override Default Class box.

5. Select the class to use from the drop-down list (in this example it is the
WebHtmlStringClass). You do not need to provide the Header File and
Implementation files.

You can use the same technique to change a JavaImageControl to an HTML
 control.

CHAPTER 11 WEB APPLICATION DESIGN CONSIDERATIONS 203

API calls

Windows API calls are tied to the machine on which an application is
running. Web-enabled applications are actually running on the server
machine and a representation is sent to the client in the form of HTML
pages. Therefore, any API calls in your application execute on the server
machine.

In many cases, this will not be appropriate. For example, playing a sound file
on a server is generally not a good idea and the user running the application
won’t hear it. In those cases, you should inhibit the call when the application
is running over the web.

If you are making the call with a BUTTON control, use the Individual
Control Options to "Hide if launched from Browser." (Internet Options
Controls).

If you are making the call in source code, enclose the function call inside a
conditional structure. For example:

IF NOT WebServer.Active ! Check if running over the web
 SoundFile='fanfare.wav'
sndPlaySound(SoundFile,1)

END

In other cases, it will be appropriate to make the call on the server. For
example, a procedure which uses MAPI to send email from the server based
on an event. In those cases, you should make sure the call works properly on
the server. It should behave the same way when executed over the web.

In a similar manner, reports without Print Preview enabled will print on the
server. This may be appropriate in some cases, but it is important to
understand its behavior.

204 CLARION 5.5 INTERNET APPLICATIONS USER’S GUIDE

Security Considerations
There are several method of implementing security in your web applications.

◆ Implementing security into the underlying application.

◆ Restricting access (Password protecting) a procedure when it is
started over the Web.

◆ Transmitting over a (SSL) secure connection.

The first method—implementing security into the original application—
requires no additional consideration in your Web application. The original
security enforcement in the Windows version should work the same way in
your Web application.

The second method—restricting access when running over the Web—uses
the browser’s built-in authentication.

The third method—transmitting over a secure connection—serves a different
purpose. It is not intended to restrict access to a user. It is intended to restrict
interception of data during transmission. This security measure can be used
alone or in conjunction with either of the other two security measures.

Using Passwords

The Internet Procedure Extension template’s Password protection uses the
browser's built-in HTTP authentication support. When a password protected
procedure is called, the browser's authentication window displays. You do
not need to create a window to collect login information. Password
protection is based on an area, a username and a password. The area is the
protected procedure.

When a browser requests a password protected area, it gets a response back
requesting the username and password for the area. By default, the area
name is created from the title of the window, and the name of the procedure.
This is stored in the WebWindow.AuthorizeArea property. The browser prompts
the user for a user name, and a password. These are then sent to the program
for validation. If the program accepts the password (i.e., it RETURNs TRUE
from the WebWindow.ValidatePassword method), the new page is displayed,
otherwise the browser prompts again. After three attempts the browser
displays a message informing the user that access is denied. This page
automatically returns the user to the last active place in the program.

Note: If the page has already been visited in the current session the
browser will normally supply the user name and the password
without prompting the user. This feature is built-in to most
browsers.

CHAPTER 11 WEB APPLICATION DESIGN CONSIDERATIONS 205

Two levels of password support are built into the procedure template. The
simplest method is to select restricted access and specify a single password
or a variable. This is automatically checked by the template, and ignores the
username. If you use a variable, it compares the password entered with the
variable’s current value.

The more advanced method is to override the WebWindow.ValidatePassword
method by entering code into the Internet- Password Validation Code
Section embed point. This embed point is inside a method with two
parameters: UserName and Password, which it receives from the browser.
You should return TRUE if the password is valid, and FALSE if it is not
valid. This allows you to look up the information in a file, or use any other
method you choose to validate the password.

Example:

USE:UserID = UserName
IF Access:UserList.Fetch(USE:UserIDKEY)
 RETURN(False)
END
IF USE:UserPassword = Password
 RETURN(True)
Else
 RETURN(False)
END

Optionally, you can change the message displayed on the browser’s
password dialog by assigning a value to WebWindow.AuthorizeArea in the
Internet-After Initializing the window object embed point.

Using a Secure Socket Layer (SSL)

This security measure requires that you run the ISAPI version of the
Application Broker under an ISAPI-compliant Web Server and have a
Digital Certificate installed. See The Application Broker chapter. The
Internet Procedure Extension template’s SSL support uses the ISAPI SSL
encryption for the duration of the procedure. When a procedure with SSL
enabled is called, the Application Broker switches into SSL mode. When the
procedure terminates, normal access is restored. This allows secure
transactions on a procedure level. Keep in mind that encryption has a marked
effect on performance. You should only enable security for procedures which
transmit sensitive data. Allowing you to encrypt only those procedures
which need secure transmission improves performance on both the client
and server side by utilizing encryption only when it is needed.

To enable SSL for a procedure:

1. From the Procedure Properties window, press Internet Options.

2. Select the Advanced tab

3. Check the Transfer over a secure connection box.

206 CLARION 5.5 INTERNET APPLICATIONS USER’S GUIDE

Using Embedded HTML
One of the most powerful features of the IBC Templates is the ability to
embed HTML code in the HTML pages which are output by the web-
enabled application running via the Application Broker. When you embed
HTML code (using the special embed points added by the templates), it is
inserted at the specified location in the HTML file returned to the browser
which executed the application.

There are two methods for embedding HTML:

1. In the Internet Procedure Extension Template, Individual Control
Overrides. This provides two text entry controls into which you write
HTML code.

2. Using the Dynamic HTML Code Template or the Static HTML Code
Template in one of the Internet embed points. These templates use the
virtual method Target.WriteLn to write to the delivered HTML file at
runtime. The Static HTML code template allows you to embed HTML
code exactly as written. The Dynamic HTML template allows you to
combine HTML code with variables from your application.

Optionally, you can use the Target.WriteLn method yourself in embedded
source code in any of the appropriate embed points.

These Embed points are identified by INTERNET at the beginning of the
description. Using the Target.WriteLn method in one of these embed points
allows you to add any HTML code at various points in the HTML document
delivered to the user at runtime. This code does not affect the application
when it is running as a Windows program.

For example, if you want a block of text to appear on the bottom of the page
delivered by the Application Broker for a procedure in your application, you
would insert the Static HTML Code Template at the Internet, before the
closing </BODY> tag embed point in the Application Generator and specify
the HTML code. This HTML code is added to the resulting HTML page
delivered to a browser client.

You can use the virtual method Target.WriteLn in any the embed points
where the Dynamic HTML Code Template and the Static HTML Code
Template are available.

Example:
Insert this code in the Internet, before the closing </BODY> tag embed:

Target.WriteLn('<<p>Copyright 2000, SoftVelocity™ Incorporated, All
Rights Reserved.<</p>')

CHAPTER 11 WEB APPLICATION DESIGN CONSIDERATIONS 207

Note: When hand-coding Clarion source to write HTML code,
remember to handle special characters, such as <, by using
two characters in succession. If you use the Static HTML Code
Template, this is handled automatically.

One benefit of using Clarion code in these embed points is the ability to
control the HTML code you want to write. The example below shows a
simple method of displaying a random hyperlink:

EXECUTE RANDOM(1,5)
Target.WriteLn('<Visit SoftVelocity<')
Target.WriteLn('<Visit ClarionOnline<')
Target.WriteLn('<Visit IceTips<')
Target.WriteLn('<Visit the Finatics<')
Target.WriteLn('<SoftVelocity News<</

A>')
END

Using references to files in embedded HTML code

When using references to files in embedded HTML code, remember that
each session has its own temporary directory. Therefore, /PUBLIC is never
the current directory for delivered web pages. This means that you must
reference the location of files. There are two ways to do this.

If you are referencing an image in HTML code, you must indicate the
location of the image file. If you are deploying under the EXE version of the
Application Broker you can prefix the filename with a leading forward slash
and deploy the image to the /PUBLIC directory. For example <IMG SRC="/
LOGO.GIF">.

If you are using the ISAPI DLL version of the Application Broker, you must
use the SELF.FILES.GetAlias() method to determine the virtual path to the
file.

For example:

Target.WriteLN('<')

would find the mygif.gif file in any directory exposed to the server
application.

Note: The preferred method is to use the SELF.Files.GetAlias()
method because it works under both the ISAPI DLL and the
EXE version of the application broker.

To use your own Java Applet class files, use the CODEBASE= tag as shown
below.

208 CLARION 5.5 INTERNET APPLICATIONS USER’S GUIDE

If you are deploying under the EXE version of the Application Broker you
can reference the <CODEBASE> as a leading forward slash and deploy the
.CLASS file to the /PUBLIC directory. If you are using the ISAPI DLL
version of the Application Broker, you must use the SELF.FILES.GetAlias()
method to determine the virtual path to use for the <CODEBASE>.

Embedded HTML Examples:

! HTML code

<applet codebase=”/” code=”TickerTape.class” width=”500" height=”32">
</applet>

! Embedded Source Examples (in any Internet Embed Point)

Target.WriteLN(‘<’)
Target.Writeln(‘<<applet ‘)
Target.Writeln(‘Codebase = “‘ & SELF.FILES.GETAlias() & ‘“ ‘)
Target.Writeln(‘code=”TickerTape.class”>’)
Target.Writeln(‘<</applet>’)

Note: In an APPLET HTMLtag, the CODEBASE attribute must
precede the code attribute. This is listed in the wrong order in
some HTML references. HTML code with the attributes in the
wrong order can cause the applet to fail (due to a "Not Found"
error).

CHAPTER 11 WEB APPLICATION DESIGN CONSIDERATIONS 209

Implementing Help in your Web Application
References are made to HTML pages based on the current window’s Help
ID. This is constructed in one of two ways: Using a Base Document with
Mid-Page anchors, or Using individual help Documents. This is specified in
the Global Application Extension Template or in the Procedure Extension
template’s Internet Options.

Using a Base Document with Mid-Page anchors

This method uses a single web page with mid-page bookmarks or anchors.
The call to the page is constructed by appending the Help ID to the base
page name with a # symbol between them (e.g., HELP.HTM#IDNAME).
Clicking on the Help button causes the page to open and scroll to the
appropriate anchor. In the example below, the first window has a HelpID of
~FirstWindowID. This means that the Help button will call
HelpFile.HTM#FirstWindowID.

Example:

<html>
<head>
<title>Example Help Document</title>
</head>
<body background=”bgrnd.gif” bgcolor=”#FFFFFF”>
<h1 align=”center”>Program Help </h1>
Introductory Text......
Introductory Text......
Introductory Text......
Introductory Text......
<h2 align=”center”>Help For First Window</h2>
Explanation of how this procedure works
Explanation of how this procedure works
Explanation of how this procedure works
Explanation of how this procedure works
<h2 align=”center”>Help For Second Window</
h2>
Explanation of how this procedure works
Explanation of how this procedure works
Explanation of how this procedure works
Explanation of how this procedure works
</body>
</html>

Using individual help Documents

This method uses a single web page for each window. The call to the page is
constructed by prepending the Help ID to .HTM extension. Clicking on the
Help button causes the page to open.

210 CLARION 5.5 INTERNET APPLICATIONS USER’S GUIDE

Both methods open the page in a new browser window named “_HELP”. If
you open your application inside a frame set where one of the frames is
named “_HELP”, the help page opens in that frame.

A web-enabled application executed by the Application Broker creates
HTML files in the /PUBLIC directory. These pages are sent to the browser
which started the application and refreshed and re-sent when the client
interacts with the application.

CHAPTER 11 WEB APPLICATION DESIGN CONSIDERATIONS 211

Windows Controls and their HTML Equivalents
A web-enabled application executed by the Application Broker delivers
HTML to the browser which started the application and refreshed and re-sent
as the user interacts with the Web page representing the application.

Certain controls translate easily to HTML, while others are created as JAVA
classes using the Clarion Java Support Library. Certain windows controls
have not been fully implemented in this release.

The list below shows the standard windows controls supported by Clarion
and the equivalent created by an Internet Connect web-enabled application.

STRING (a variable string)
Displays as a Java String Control, which updates
dynamically.

STRING (a text string)
Displays as text by default. By setting individual
control overrides, it can display as a Java String
Control, which updates dynamically. If you are
updating the STRING in your application using a
property assignment, you should specify that the
string update dynamically.

IMAGE A static image displays as an HTML image
with its source specified as the graphic file in your
application. By setting individual control overrides,
it can display as a Java Image Control, which
updates dynamically. For more information see
Images.

REGION Partial support. A REGION that covers an IMAGE
control and has functionality implemented in its
EVENT:Accepted creates the HTML image as an
image map (USEMAP=) with the functionality of
the region associated with that portion of the image.

LINE Not supported--use Embedded HTML to display a
Horizontal Rule <HR> or an image .

BOX Not supported--use Embedded HTML to display an
image .

ELLIPSE Not supported--use Embedded HTML to display an
image .

212 CLARION 5.5 INTERNET APPLICATIONS USER’S GUIDE

ENTRY Created as an HTML entry field <INPUT
TYPE=TEXT VALUE = value in field >. Entry
patterns are not supported.

BUTTON Created as an <INPUT TYPE=SUBMIT > unless it
has an ICON, then a Java button is created which
displays the Icon. Icons displayed on Java buttons
must be deployed to the /PUBLIC directory.

PROMPT Displays as text.

OPTION Created as an HTML <OPTION>. If an OPTION
has the BOXED attribute, then it is implemented in
HTML as a <TABLE> with the border specified in
the Global or Procedure options for OPTIONs.

CHECK Created as an HTML checkbox <INPUT
TYPE=CHECKBOX VALUE = value in field >

GROUP If a GROUP has the BOXED attribute, then it is
implemented in HTML as a <TABLE> with the
border specified in the Global or Procedure options
for GROUPs.

LIST Creates a Java Listbox which supports most of the
LIST attributes, including conditional colors and
icons. Icons must be deployed to the /PUBLIC
directory. When the Java Listbox has focus in the
browser, the navigation keys are supported (arrow-
up, page-up, etc.). If the LIST has a locator, the Java
Listbox supports it when it has focus. Double-click
handling is also supported. Drag-and-drop, edit-in-
place, and right-click popups are not supported.

Tree Creates a Java Tree Listbox. Supports all attributes,
including conditional colors and icons. Icons must
be deployed to the /PUBLIC directory.

FileDropCombo
Created as an HTML drop-down (<SELECT>
structure) with the values from the file created as
Options. This does not support multiple columns.
Optionally, you can create as a Java Non-drop list
which supports multiple columns.

DropList Created as an HTML drop-down (<SELECT>
structure). This does not support multiple columns.
Optionally, you can create as a Java Non-drop list
which supports multiple columns.

CHAPTER 11 WEB APPLICATION DESIGN CONSIDERATIONS 213

DropCombo Created as an HTML entry field <INPUT
TYPE=TEXT VALUE = value in field >

COMBO Created as an HTML entry field <INPUT
TYPE=TEXT VALUE = value in field >.

SPIN Created as an HTML entry field <INPUT
TYPE=TEXT VALUE = value in field >.

TEXT Created as an HTML Text field <TEXTAREA >.

CUSTOM (.VBX) Not supported.

MENU Creates a list of hyperlinks which display across the
top of the HTML page or to the left of the window,
as specified in the Global Internet Options.

ITEM See MENU.

RADIO Creates an HTML Radio button.

APPLICATION HTML <TABLE >inside an HTML page.

WINDOW HTML <TABLE inside an HTML page.

REPORT If Print Preview is enabled, this creates a series of
HTML pages with Java navigation buttons (Next
page, Previous page, etc.). If Preview is not enabled,
the report will print on the server.

HEADER, FOOTER, BREAK, FORM, DETAIL
See REPORT.

OLE Not Supported (except via embedding an ActiveX in
Embedded HTML).

PROGRESS Not supported.

SHEET Created as JAVA Tab controls.

TAB Created as JAVA Tab controls.

PANEL Not supported. You may use a GROUP with the
appropriate borderwithd to provide a similar
appearance.

TOOLBAR Created as a row in an HTML <TABLE>. Controls
on the toolbar are placed as specified in the Global
or procedure Internet Options.

214 CLARION 5.5 INTERNET APPLICATIONS USER’S GUIDE

Hand Coded Applications

About This Section

The Internet Connect Templates generate the code necessary to Web-enable
Clarion applications. However, you do not have to use the Internet Connect
Templates to Web-enable your programs.

That is, you can use the IBC Library to Web-enable your hand coded
programs. This chapter presents a minimal “Hello Web” hand coded program
that uses the IBC Library. This chapter also discusses the IBC Library’s
project system requirements.

The easiest way to learn to use the IBC Library within hand coded programs
is to Web-enable an application with the Internet Connect Templates, then
study the template generated code.

HelloWeb Example Program

The following hybrid Web/Windows program displays a single window or
Web page with a “Hello Web” message and a “Goodbye Web” button to shut
down the program.

HelloWeb PROGRAM
LinkBaseClasses EQUATE(1) !Enable LINK on CLASS declarations

! so linker can find implementation
! (.clw) files

BaseClassDllMode EQUATE(0) !Activate DLL on CLASS declarations
! for required 32-bit dereference

 INCLUDE('ICBROKER.INC') !Declare BrokerClass
 INCLUDE('ICWINDOW.INC') !Declare WebWindowClass
 INCLUDE('ICSTD.EQU') !Declare IC standard EQUATEs
 MAP
 Hello !Prototype Hello procedure
 WebControlFactory(SIGNED),*WebControlClass !Prototype WebControlFactory
 MODULE('')
 SetWebActiveFrame(<*WebFrameClass>) !Prototype SetWebActiveFrame
 END
 END
Broker BrokerClass !Declare Broker object
HtmlManager HtmlClass !Declare HtmlManager object
JavaEvents JslEventsClass !Declare JavaEvents object
WebServer WebServerClass !Declare WebServer object
WebFilesManager WebFilesClass !Declare WebFilesManager object
ICServerWin WINDOW,AT(-1,-1,0,0) !Declare “invisible” server window

END
 CODE
 SetWebActiveFrame() !Tell IBC objects (WebWindow) there

! is no active APPLICATION frame
 WebFilesManager.Init(1, '') !Initialize WebFilesManager
 JavaEvents.Init !Initialize JavaEvents
 Broker.Init('HelloWeb', WebFilesManager) !Initialize Broker

CHAPTER 11 WEB APPLICATION DESIGN CONSIDERATIONS 215

 HtmlManager.Init(WebFilesManager) !Initialize HtmlManager
 WebServer.Init(Broker,'',600,'',WebFilesManager) !Initialize WebServer
 IF (WebServer.GetInternetEnabled()) !If launched by Application Broker
 OPEN(ICServerWin) ! open “invisible” window on server
 ACCEPT
 IF (EVENT() = EVENT:OpenWindow)
 WebServer.Connect !Establish channel to App Broker
 Hello !Call Hello (Web mode)
 BREAK
 END
 END
 ELSE !If not launched by App Broker
 Hello ! call Hello (Windows mode)
 END
 WebServer.Kill !Shut down WebServer object
 HtmlManager.Kill !Shut down HtmlManager object
 Broker.Kill() !Shut down Broker object
 JavaEvents.Kill !Shut down JavaEvents object
 WebFilesManager.Kill !Shut down WebFilesManager object
Hello PROCEDURE

Window WINDOW,AT(,,139,59),GRAY,DOUBLE !declare window
STRING('Hello Web!'),AT(51,14),USE(?Hello) ! with Hello Web string
BUTTON('Goodbye Web!'),AT(39,31),USE(?Bye) ! and Goodbye Web button

END
WebWindow WebWindowClass !Declare WebWindow object

CODE
 OPEN(window) !Open the window
 WebWindow.Init(WebServer,HtmlManager) !Initialize WebWindow object by

! gathering info about window
! and its controls

 ACCEPT
 IF WebWindow.TakeEvent() THEN BREAK. !Web event handling:

! handles all events necessary
! to respond to Client request
! e.g. generate new HTML page

 IF EVENT() = EVENT:Accepted !Usual Windows event handling
POST(Event:CloseWindow) !Close window on ?Bye button

END
 END
 CLOSE(window) !Close the window
 WebWindow.Kill !Shut down WebWindow object
 RETURN
WebControlFactory PROCEDURE(SIGNED Type) !Instantiate WebControl objects
NewControl &WebControlClass ! requested by WebWindow object
 CODE
 CASE (Type)
 OF CREATE:ClientArea
 NewControl &= NEW WebClientAreaClass
 OF CREATE:String
 NewControl &= NEW WebHtmlStringClass
 OF CREATE:TextButton
 NewControl &= NEW WebHtmlButtonClass
 END
 IF (~NewControl &= NULL)

NewControl.IsDynamic = TRUE
END

 RETURN NewControl

216 CLARION 5.5 INTERNET APPLICATIONS USER’S GUIDE

Hand Coded Project Considerations

The IBC Library requires several components in order to successfully
compile and link. Specify the following components with the Project Editor
dialog. See The Project System in the User’s Guide for more information.

ICSTD.CLW

ICSTD.CLW contains a variety of procedures that are shared by several
different IBC objects. These procedures are prototyped in ICSTD.INC.
These procedures are not methods of a CLASS, and therefore cannot be
identified to the linker by the LINK attribute like the IBC methods are. To
locate these procedures for the linker, you must add the ICSTD.CLW file to
the External source files branch of the project tree. ICSTD.CLW is
installed by default to the Clarion LIBSRC\ directory.

DOS Database Driver

The IBC Library objects use the DOS Database Driver to write the HTML
code and JSL data requested by Client browsers. You must add the DOS
driver to the Database driver libraries branch of the Project tree to resolve
IBC references to DOS driver procedures.

ASCII Database Driver

The IBC Library objects use the ASCII Database Driver to process reports.
You must add the ASCII driver to the Database driver libraries branch of
the Project tree to resolve IBC references to ASCII driver procedures.

C5HTMx.LIB

C5HTMx.LIB contains a variety of compiled objects that are shared by
several different IBC objects. These executable objects are prototyped in
ICSTD.INC. To locate these executables for the linker, you must add the
C4HTMx.LIB file to the Library, object, and resource files branch of the
project tree.

Web-enabled Programs Must be 32-bit

To have any practical benefits, web-enabled programs must be 32-bit. This is
because, in an internet environment, multiple clients may request the
application at the same time; therefore, the program must support multiple
instances on the web server. Unlike 16-bit programs, 32-bit programs allow
multiple instances.

CHAPTER 11 WEB APPLICATION DESIGN CONSIDERATIONS 217

218 CLARION 5.5 INTERNET APPLICATIONS USER’S GUIDE

Chapter 12 IBC Library Quick Reference 219

12 - IBC LIBRARY QUICK REFERENCE

The Internet Connect Templates rely heavily on the Internet Builder Class
(IBC) Library to accomplish the tasks necessary to create a hybrid Web/
Windows application. This chapter briefly documents the IBC Library
methods and properties referenced by the Internet Connect Templates, as
well as other IBC Library methods and properties you are likely to use
during the course of developing your hybrid Web/Windows application.

For complete documentation of these items and many more, see the IBC
Library Reference. All the IBC Library methods and properties are fully
documented in the IBC Library Reference. The IBC Library Reference is
available in electronic .PDF format on the Internet Connect installation CD.

220 CLARION 5.5 INTERNET APPLICATIONS USER’S GUIDE

Classes and Their Template Generated Objects

The Internet Connect templates instantiate objects from the IBC Library. The
object names are usually similar to the corresponding class names, but they
are not exactly the same. As a result, your Web-enabled application’s
generated code may contain statements similar to these:

Broker.Init
MainFrame.TakeEvent
IC:CurFrame.CopyControlsToWindow
WebWindow.OptionBorderWidth = 2
IC:CurControl.Init
IC:CurControl.DisabledAction = DISABLE:Show
WebMenubar.SetBackground(16711680, '')
HtmlPreview.Init(WebServer, HtmlManager, PrintPreviewQueue)

The various IBC classes and their template instantiations are listed below so
you can more easily identify IBC objects in your application’s generated
code. The template generated objects are also listed beside the class name in
the Quick Reference section of this chapter.

Internet Builder Class Template Generated Object

BrokerClass Broker
HtmlClass HtmlManager
JslEventsClass JavaEvents
TextOutputClass Target
HttpClass Broker.Http
WebFilesClass WebFilesManager, Broker.Files,

HtmlManager.Files,
Broker.Http.Files,
JavaEvents.Files, WebServer.Files,
WebWindow.Files, andTarget.Files

WebServerClass WebServer
WebClientManagerClass Broker.CurClient
WebFrameClass MainFrame and IC:CurFrame
WebWindowClass WebWindow
WebControlClass IC:CurControl
WebCaptionClass WebCaption
WebClientAreaClass WebClientArea
WebMenubarClass WebMenubar
WebToolbarClass WebToolbar
WebReportClass HtmlPreview

Chapter 12 IBC Library Quick Reference 221

Quick Reference

BrokerClass (Broker)

Init (initialize the BrokerClass object)
Kill (shut down the BrokerClass object)
ServerName (server identifier)

WebClientManagerClass (Broker.CurClient)

IP (client IP address)

HtmlClass (HtmlManager)

Init (initialize the HtmlClass object)
Kill (shut down the HtmlClass object)

JslEventsClass (JavaEvents)

Init (initialize the JslEventsClass object)
Kill (shut down the JslEventsClass object)

TextOutputClass (HtmlManager or Target)

Writeln (write one line of text)

HttpClass (Broker.Http)

GetCookie (get cookie from client)
SetCookie (get cookie from client)
SetProcName (set protected area name)
SetProgName (set server name)

WebFilesClass (WebFilesManager or Files)

GetAlias (return HTML alias for file)
Init (initialize the WebFilesClass object)
Kill (shut down the WebFilesClass object)
SelectTarget (set public or secure channel)

222 CLARION 5.5 INTERNET APPLICATIONS USER’S GUIDE

WebServerClass (WebServer)

Active (Web mode or Windows mode)
CommandLine (command line parameters)
Connect (open communication channel to Broker)
Init (initialize the WebServerClass object)
JavaLibraryPath (Java Support Library location)
Kill (shut down the WebServerClass object)
PageToReturnTo (return URL)
ProgramName (Server pathname)
Quit (shut down the server program)
SetSendWholePage (force full page refresh)
SetNewPageDisable (suppress outgoing Web pages)
TimeOut (period of inactivity after which to shut down)

WebFrameClass (MainFrame or IC:CurFrame)

CopyControlsToWindow (merge global controls to local window)
FrameWindow (reference to APPLICATION)
TakeEvent (handle browser and ACCEPT loop events)

WebWindowBaseClass (WebWindow)

AllowJava (generate or suppress JavaScript)
BorderWidth (Web page border width)
CloseImage (close button graphic)
CreateCaption (include a titlebar on the Web page)
CreateClose (include a close button on the Web page)
DisabledAction (default HTML for disabled controls)
FormatBorderWidth (HTML table cell border width)
GroupBorderWidth (group box border width)
MenubarType (menu placement)
OptionBorderWidth (option box border width)
SheetBorderWidth (sheet border width)

Chapter 12 IBC Library Quick Reference 223

WebWindowClass (WebWindow)

AuthorizeArea (name of password protected Web page)
HelpDocument (HTML help document)
HelpEnabled (HTML help enabled flag)
HelpRelative (remote or local help document)
IsSecure (public or secure channel)
AddControl (add control information)
CreateHtmlPage (generate HTML for a window)
GetControlInfo (return control reference)
GetToolbarMode (return toolbar entity)
Init (initialize the WebWindowClass object)
Kill (shut down the WebWindowClass object)
MenubarType (menu placement)
SetBackground (set Web page background)
SetFormatOptions (set Web page scale and alignment)
SetHelpDocument (enable single document Web page help)
SetHelpURL (enable multiple document Web page help)
SetPageBackground (set Web page background)
SetPassword (require password)
SetSplash (make this a splash window)
SetTimer (set Web page timer and action)
SuppressControl (omit control from Web page)
TakeEvent (handle browser and ACCEPT loop events)
ValidatePassword (verify password)

WebControlClass (IC:CurControl)

DisabledAction (HTML for disabled control)
CreateHtml (write HTML for control and its attributes)
Feq (control number)
ParentFeq (parent control number)
Init (initialize the WebControlClass object)
Kill (shut down the WebControlClass object)
SetBorderWidth (set BorderWidth)

WebJavaStringClass (IC:CurControl)

SetAutoSpotLink (set live hypertext links)

WebHtmlImageClass (IC:CurControl)

SetDescription (set alternative text for Web image)

224 CLARION 5.5 INTERNET APPLICATIONS USER’S GUIDE

WebJavaListClass (IC:CurControl)

ResetFromQueue (record changes to Server LIST queue)
SetAutoSpotLink (set live hypertext links)
SetEventAction (associate browser action with control event)
SetQueue (set the data source queue)

WebCaptionClass (WebCaption)

Alignment (text justification)
SetBackground (set Web page caption background)
SetFont (set Web page caption font)

WebClientAreaClass (WebClientArea)

SetBackground (set Web page client area background)

WebMenubarClass (WebMenuBar)

SetBackground (set Web page menu area background)

WebToolbarClass (WebToolbar)

SetBackground (set Web page toolbar area background)

WebReportClass (HtmlPreview)

Init (initialize the WebReportClass object)
Kill (shut down the WebReportClass object)
Preview (generate HTML to represent the report)

APPENDIX GLOSSARY 225

GLOSSARY

All definitions are general terms, except where otherwise indicated. The context for definitions
marked (Clarion) pertain specifically to the Clarion language or the Clarion development
environment.

applet A small, single purpose application; applets are not necessarily stand alone executable programs.
Small programs written in Java are commonly called applets. In HTML, the <APPLET> tag
indicates a Java applet.

Application Broker (Clarion) An Application Broker is required to run Clarion hybrid Web/Windows applications. The
Application Broker launches a hybrid Web/Windows application on the Internet server and
refreshes the Clarion Java Support Library (JSL) on the browser. The Application Broker then
organizes the message traffic into a remote computing session, routing events produced by the
Java Support Library to the hybrid Web/Windows application and routing HTML scripts produced
by the application to the browser.

Broker (Clarion) See Application Broker.

Client (Clarion) An internet browser that launches a hybrid Web/Windows application with the
Application Broker.

cookie Information stored on a client machine at the request of a server.

default button A command button which is activated by default when the user presses the enter button.

disabled A window, menu, or control visible but prevented from gaining focus.

encryption The representation of data in scrambled or encrypted form, such that an unauthorized user may not
access the data in an intelligible format.

font The family name of related type face files. For example, “Times New Roman” is the font name,
and “Times New Roman plain,” “Times New Roman Italic,” “Times New Roman Bold,” and
“Times New Roman Bold Italic” are the styles, which are stored in separate files.

font style Character formatting applied to a font face, such as bold, italic, or bold italic.

226 CLARION 5 INTERNET CONNECT USER’S GUIDE

GIF image Graphics Interchange File (GIF) format; an image format popularized by CompuServe. Generally
acknowledged to offer the best compression ration for 256 color or less images. Attention: should
you utilize the word “GIF” anywhere within an application or program, you must add a trademark
notice: “GIF (Graphics Interchange Format) is a trademark of CompuServe Information Services.”

global toolbar A horizontal or vertically arranged group of command buttons, and/or other controls, generally
remaining accessible the entire time a program executes.

hide Prevent a control or window from displaying on screen; the control exists but is not seen by the
end user.

HTML Hyper-Text Markup Language—the language internet browsers use to format and display Web
pages.

HTTP Hyper-Text Transfer Protocol—the symbols that internet browsers and servers use to transmit and
receive HTML.

Hybrid Web/Windows
Application Hybrid Web/Windows Applications look like standard Windows applications when launched under

Windows, but work as Internet servers when launched by the Clarion Application Broker. Hybrid
Web/Windows applications can then be manipulated from any Java enabled browser such as
Microsoft Internet Explorer or Netscape Navigator.

icon A graphical representation of a physical object in the system, such as a printer. Also, any small
image representing an action, concept or program, as when an icon appears on a command button.
The normal icon file format carries the .ICO extension; one of its main features is built-in support
for transparency. This enables you to display a small picture without obliterating the background.

include file An external source file read and preprocessed at compile time. In Clarion, the Equates and other
files in the LIBSRC subdirectory are the default include files.

Internet Developer’s Kit (Clarion) The Internet Developer’s Kit is an accessory product that can be used with the Clarion
Standard, Professional, or Enterprise Editions to develop new hybrid Web/Windows Applications
or to Web-enable existing Clarion applications. A Developer Version of the Application Broker
which permits as many as five connections is included with the Internet Developer’s Kit.

Java Support Library (Clarion) The Java Support Library (JSL) is a small set of Java classes (less than 200k) that
implement a wide variey of Windows-like controls in an Internet Browser. The JSL generates
events from the internet browser and processes messages from the internet server.

JPG image A true-color graphics file format featuring 24-bit color storage. It usually provides for adjustable
loss compression, which allows for greater compression but loss of some resolution.

JSL data The protocol and data a hybrid Web/Windows application sends to the internet browser for
processing by the Java Support Library (JSL). The hybrid Web/Windows application sends JSL
data to the internet browser to accomplish very fast partial Web page updates.

GLOSSARY 227

Remote Computing
Session (Clarion) The Clarion Application Broker organizes events produced by the Java Support Library

(JSL) and HTML pages produced by hybrid Web/Windows applications into a remote computing
session by maintaining the status of the dialog between the browser and server.

Reusable Client (Clarion) The Java Support Library (JSL) is a small set of Java classes (less than 200K) that
generates events from the internet browser and processes messages from the internet server. This
thin client is reused by every Clarion hybrid Web/Windows application, thereby minimizing
connect time and local browser resource requirements (disk space and RAM).

Server (Clarion) A hybrid Web/Windows application launched by the Application Broker at the request of
an internet browser.

Session Router (Clarion) The Session Router distributes remote computing sessions to multiple Application
Brokers over the Internet, when high popularity or demand requires the deployment of additional
Internet servers. The Session Router is available separately.

timer A Windows resource which can automatically send a message to an application at pre-defined
intervals.

Ultra-thin Reusable
Client (Clarion) The Java Support Library (JSL) is a small set of Java classes (less than 200K) that

generates events from the internet browser and processes messages from the internet server. This
thin client is reused by every Clarion hybrid Web/Windows application, thereby minimizing
connect time and local browser resource requirements (disk space and RAM).

228 CLARION 5 INTERNET CONNECT USER’S GUIDE

INDEX 229

INDEX

A

Accepted ... 154
Action on Event ... 181
Active

WebServerClass ... 222
AddControl

WebWindowClass ... 223
AddServerProperty Code Template 55, 191
Alignment .. 168, 169, 183, 184

WebCaptionClass .. 224
Allow dynamic updates ... 179
AllowJava

WebWindowBaseClass ... 222
ALT .. 180
applet ... 225
Application Toolbar ... 51, 187
Application Broker .. 225
Application Menu ... 50, 187
AuthorizeArea

WebWindowClass ... 223
Autospot Hyperlinks ... 179

B

Background color
162, 168, 169, 170, 171, 172, 173, 183, 184, 185

Background image
162, 163, 168, 169, 170, 171, 172, 173, 183, 184, 185, 186

BorderWidth
WebWindowBaseClass ... 222

Broker ... 220, 225
Broker.CurClient .. 220
Broker.CurClient.IP .. 221
Broker.Http .. 220
Broker.Http.GetCookie ... 221
Broker.Http.SetCookie ... 221
Broker.Http.SetProcName ... 221
Broker.Http.SetProgName ... 221
Broker.Init .. 221
Broker.Kill .. 221
Broker.ServerName ... 221
BrokerClass .. 219, 221

C

Caption ... 168, 183

Center .. 162
Center Window on Page .. 162, 172
centering an IMAGE .. 153
Class Overrides ... 171
Classes Local to Application Broker 167
Client ... 225
Client Area ... 171
Close button .. 170, 185
CloseImage

WebWindowBaseClass ... 222
CommandLine

WebServerClass ... 222
Complete page refresh ... 181
Connect

WebServerClass ... 222
Control ... 164
Control options .. 41, 174
Control Overrides ... 179
cookie .. 225
Cookies ... 54, 190
CopyControlsToWindow

WebFrameClass ... 222
Create Application dialog ... 123, 136
Create extra close button ... 170
CreateCaption

WebWindowBaseClass ... 222
CreateClose

WebWindowBaseClass ... 222
CreateHtml

WebControlClass .. 223
CreateHtmlPage

WebWindowClass ... 223
CurClient .. 220

D

default button ... 225
Delta for grid snapping ... 166, 176
disabled .. 225
DisabledAction

WebControlClass .. 223
WebWindowBaseClass ... 222

Downloading the Java Support Library 151
Drop listboxes .. 164
Dynamic HTML Code Template 52, 189
dynamic updates .. 179

E

Edit-In-Place .. 159
Enable Help for internet applications 163
Enable Refresh on timer .. 48, 178
encryption .. 225
Event Handling ... 154

230 CLARION 5.5 INTERNET APPLICATIONS

F

Feq
WebControlClass .. 223

Font ... 225
Font color .. 169, 184
Font family name .. 168, 183
Font size ... 168, 183
font style .. 225
FormatBorderWidth

WebWindowBaseClass ... 222
Formatting .. 176
Frame Menu .. 35, 165
Frame Toolbar ... 35, 166
FrameWindow

WebFrameClass ... 222

G

GetAlias
WebFilesClass .. 221

GetControlInfo
WebWindowClass ... 223

GetCookie
HttpClass .. 221

GetCookie Code Template .. 53, 190
GETINI ... 54, 190
GetServerProperty Code Template 55, 191
GetToolbarMode

WebWindowClass ... 223
GIF image .. 226
Global Internet Application Extension 33, 161
Group Border width .. 165
GroupBorderWidth

WebWindowBaseClass ... 222

H

Help .. 163, 173
Help Document ... 164, 174
Help Ids are links within a base document 163, 174
Help Ids are links within a base document box 174
Help Window Style .. 163, 174
HelpDocument

WebWindowBaseClass Properties 223
HelpEnabled

WebWindowBaseClass Properties 223
HelpRelative

WebWindowBaseClass Properties 223
hide .. 226
Horizontal Pixels per Char ... 166, 176
HTML .. 226

HtmlClass .. 221
HtmlManager .. 220
HtmlManager.Init .. 221
HtmlManager.Kill .. 221
HtmlPreview 220, 224. See WebReportClass
HtmlPreview.Init ... 224
HtmlPreview.Kill ... 224
HtmlPreview.Preview ... 224
HTTP .. 226
HTTP header. ... 55, 191
Hybrid Web/Windows Application ... 226
Hyperlinks .. 179

I

IBC templates .. 161
IC:CurControl .. 220, 223
IC:CurControl.CreateHtml .. 223
IC:CurControl.DisabledAction ... 223
IC:CurControl.Feq .. 223
IC:CurControl.ParentFeq .. 223
IC:CurControl.ResetFromQueue .. 224
IC:CurControl.SetAutoSpotLink 223, 224
IC:CurControl.SetBorderWidth ... 223
IC:CurControl.SetDescription ... 223
IC:CurControl.SetEventAction ... 224
IC:CurControl.SetQueue .. 224
IC:CurFrame .. 220
IC:CurFrame.CopyControlsToWindow 222
IC:CurFrame.FrameWindow ... 222
IC:CurFrame.TakeEvent .. 222
Icon ... 226
If control disabled ... 164
Image for close .. 170
Implementation file ... 171
Include caption ... 183
include file .. 226
Individual Overrides for a Control .. 179
Init

BrokerClass .. 221
HtmlClass ... 221
JslEventsClass ... 221
WebControlClass .. 223
WebFilesClass .. 221
WebReportClass ... 224
WebServerClass ... 222
WebWindowClass ... 223

Internet Builder Class Templates .. 161
Internet Developer’s Kit .. 226
IsSecure

WebWindowClass ... 223

INDEX 231

J

Java Support Library (JSL) ... 226
JavaEvents ... 220. See JslEventsClass
JavaEvents.Init .. 221
JavaEvents.Kill .. 221
JavaLibraryPath

WebServerClass ... 222
JPG ... 226
JSL .. 226
JSL data .. 226
JslEventsClass .. 221

K

Kill
BrokerClass .. 221
HtmlClass ... 221
JslEventsClass ... 221
WebControlClass .. 223
WebFilesClass .. 221
WebReportClass ... 224
WebServerClass ... 222
WebWindowClass ... 223

M

MainFrame ... 220
MainFrame.CopyControlsToWindow 222
MainFrame.FrameWindow .. 222
MainFrame.TakeEvent ... 222
MDI .. 34, 45, 165, 176
Menu .. 184
MenubarType

WebWindowBaseClass ... 222
WebWindowClass ... 223

O

Option Border width ... 165
OptionBorderWidth

WebWindowBaseClass ... 222
Override Global settings ... 39, 172, 173
Overrides for a Control ... 179

P

Page Settings .. 172
Page to return to on exit .. 36, 166
PageToReturnTo

WebServerClass ... 222
ParentFeq

WebControlClass .. 223

Partial page refresh .. 181
Partial Refresh

Updating Controls .. 154
password .. 47, 177
Preview

WebReportClass ... 224
Process on Browser ... 181
product registration .. 16
ProgramName

WebServerClass ... 222
PUTINI ... 54, 190

Q

Quit
WebServerClass ... 222

R

Refresh on timer ... 48, 178
Remote Computing Session ... 227
ResetFromQueue

WebJavaListClass ... 224
Restrict Access to this procedure 47, 177
Return if launched from browser ... 174
Reusable Client .. 227

S

Secure Socket Layer .. 47, 177
Security .. 47, 177
SelectTarget

WebFilesClass .. 221
Server .. 227
Session Router .. 227
SetAutoSpotLink

WebJavaListClass ... 224
WebJavaStringClass ... 223

SetBackground
WebCaptionClass .. 224
WebClientAreaClass ... 224
WebMenubarClass .. 224
WebToolbarClass .. 224
WebWindowClass ... 223

SetBorderWidth
WebControlClass .. 223

SetCookie
HttpClass .. 221

SetCookie Code Template ... 53, 190
SetDescription

WebHtmlImageClass ... 223
SetEventAction

WebJavaListClass ... 224

232 CLARION 5.5 INTERNET APPLICATIONS

SetFont
WebCaptionClass .. 224

SetFormatOptions
WebWindowClass ... 223

SetNewPageDisable
WebServerClass ... 222

SetPageBackground
WebWindowClass ... 223

SetPassword
WebWindowClass ... 223

SetProcName
HttpClass .. 221

SetProgName
HttpClass .. 221

SetQueue
WebJavaListClass ... 224

SetSendWholePage
WebServerClass ... 222

SetSplash
WebWindowClass ... 223

SetTimer
WebWindowClass ... 223

Sheet Border width .. 164
SheetBorderWidth

WebWindowBaseClass ... 222
SSL .. 47, 177
Static HTML Code Template ... 52, 189
Sub directory for pages ... 37, 167
SuppressControl

WebWindowClass ... 223

T

TakeEvent
WebFrameClass ... 222
WebWindowClass ... 223

Target .. 220
Target.GetAlias .. 221
Target.Writeln ... 221
TextOutputClass .. 221
Time out ... 37, 167
TimeOut

WebServerClass ... 222
TIMER .. 48, 178
Timer ... 227
Toolbar .. 184, 226
Transfer over a secure connection 47, 177

U

Ultra-thin Reusable Client ... 227
Update Image dynamically ... 180

URL of help documents ... 163, 173
Use Long Filenames ... 167

V

ValidatePassword
WebWindowClass ... 223

Vertical Pixels per Char ... 166, 176

W

Web-enable a Clarion application 33, 161
Web/Windows Application .. 226
WebCaption .. 220, 224
WebCaption.Alignment ... 224
WebCaption.SetBackground .. 224
WebCaption.SetFont .. 224
WebCaptionClass ... 224
WebClientArea .. 220, 224
WebClientArea.SetBackground .. 224
WebClientAreaClass .. 224
WebClientManagerClass .. 221
WebControlClass ... 223
WebFiles .. 221
WebFilesClass ... 221
WebFilesManager ... 220
WebFilesManager.GetAlias .. 221
WebFilesManager.Init ... 221
WebFilesManager.Kill ... 221
WebFilesManager.SelectTarget .. 221
WebFrame ... 222
WebFrameClass .. 222
WebHtmlImageClass ... 223
WebJavaListClass ... 224
WebMenubar ... 220, 224
WebMenubar.SetBackground ... 224
WebMenubarClass ... 224
WebReportClass .. 224
WebServer ... 220
WebServer.Active .. 222
WebServer.CommandLine .. 222
WebServer.Connect ... 222
WebServer.Init ... 222
WebServer.JavaLibraryPath ... 222
WebServer.Kill ... 222
WebServer.PageToReturnTo .. 222
WebServer.ProgramName ... 222
WebServer.Quit ... 222
WebServer.SetNewPageDisable .. 222
WebServer.SetSendWholePage ... 222
WebServer.TimeOut .. 222
WebToolbar ... 220, 224

INDEX 233

WebToolbar.SetBackground ... 224
WebToolbarClass ... 224
WebWindow ... 220, 222, 223
WebWindow.AddControl ... 223
WebWindow.AllowJava ... 222
WebWindow.AuthorizeArea .. 223
WebWindow.BorderWidth ... 222
WebWindow.CloseImage .. 222
WebWindow.CreateCaption .. 222
WebWindow.CreateClose ... 222
WebWindow.CreateHtmlPage ... 223
WebWindow.DisabledAction ... 222
WebWindow.FormatBorderWidth .. 222
WebWindow.GetControlInfo .. 223
WebWindow.GetToolbarMode ... 223
WebWindow.GroupBorderWidth .. 222
WebWindow.Init ... 223
WebWindow.IsSecure .. 223
WebWindow.Kill ... 223
WebWindow.MenubarType ... 222, 223
WebWindow.OptionBorderWidth ... 222
WebWindow.SetBackground .. 223
WebWindow.SetFormatOptions .. 223
WebWindow.SetPageBackground .. 223
WebWindow.SetPassword ... 223
WebWindow.SetSplash .. 223
WebWindow.SetTimer .. 223
WebWindow.SheetBorderWidth .. 222
WebWindow.SuppressControl ... 223
WebWindow.TakeEvent .. 223
WebWindow.ValidatePassword ... 223
WebWindowBaseClass .. 222
WebWindowBaseClass Properties

HelpDocument .. 223
HelpEnabled .. 223
HelpRelative .. 223

WebWindowClass .. 223
Window border width ... 163, 173
Window Settings ... 33, 39, 162, 173
Writeln

TextOutputClass ... 221

234 CLARION 5.5 INTERNET APPLICATIONS

	Introduction
	What is WebBuilder and Internet Connect?
	Clarion Internet Technologies and the Clarion Development Environment
	What You'll Find in this Book
	Where to Find More Information
	Documentation Conventions
	Typeface Conventions
	Keyboard Conventions

	Product Information
	Registering This Product
	Technical Support

	Part I -- WebBuilder Technology
	1 - Web-enable an Example Application
	Introduction
	Starting Point

	2 - Web vs Windows applications
	Introduction
	What is a Skeleton?
	What is TSSCRIPT?
	Dynamic vs. Static HTML
	The Application Broker

	3 - Web Templates
	Web Application Extension
	Web Procedure Extension
	Frame Procedure MDI Options
	Application Menu
	Application Toolbar
	Code Templates
	Dynamic HTML Code Template
	Static HTML Code Template
	GetCookie Code Template
	SetCookie Code Template
	Cookies (Persistent Client Data)
	AddServerProperty Code Template
	GetServerProperty Code Template
	RedirectToPage Code Template
	WebGridExtension
	WebHitManager
	WebHitProc
	WebShowHits
	WebGuard Application Extension
	WebGuardProc Procedure Extenstion
	WebVisitor
	DeleteVisitorProcess

	4 - TSScript
	Introduction
	Skeletons
	TSScript
	META Tags
	WebStyle Examples

	5 - Skeleton Guide
	Introduction
	Where are the Skeleton files?
	Summary

	6 - Common Questions and Answers
	Introduction
	Common Questions
	How do I set background colors for pages in my application?
	How can I set a default font?
	How can I implement Cascading Style Sheets?
	How can I have an image with text on a button?
	How can I get better control over size & placement of controls?
	How can I use meta-tags?
	How can I make a pop-up window for data validation?
	What is the difference between POST and GET and how do I change between the two?
	How can I get server variables and their values?
	How can I create tooltips?
	How can I launch a Clarion application from a link?
	How can I add email capability to my applications?

	Part II -- Internet Connect
	7 - Tutorial-Making a Web Application
	Web Application Wizard
	Creating a hybrid Web/Windows Application
	Deploying the Application
	Faster is Better-Optimizing your Application
	Looks are Important-Adding Graphics

	8 - Tutorial- Web-enabling an Existing Application
	Using the Global Internet Application Extension Template
	Porting an Application to the Web

	9 - Tutorial- Advanced Web Programming Techniques
	Using Cookies
	Embedding HTML
	Covering the Download with a Splash Window
	Using Partial Refresh to Update Controls
	Restricting Access to a Procedure
	Password Protection

	Restricting Edit-In-Place

	10 - The Internet Builder Class Templates
	The Global Internet Application Extension Template
	Page Settings
	Window Settings
	Help
	Control
	MDI
	Advanced
	Classes

	Global Window Component Options
	Caption
	Menu
	ToolBar
	Client Area
	Class Overrides

	Internet Procedure Extension Template
	Page Settings
	Window Settings
	Help
	Controls
	MDI
	Advanced

	Individual Overrides for a Control
	Display
	HTML
	Events
	Classes

	Procedure Window Component Options
	Caption
	Menu
	Toolbar
	Client Area

	Frame Procedure MDI Options
	Application Menu
	Application Toolbar

	Code Templates
	Dynamic HTML Code Template
	Static HTML Code Template
	GetCookie Code Template
	SetCookie Code Template
	Cookies (Persistent Client Data)
	AddServerProperty Code Template
	GetServerProperty Code Template

	11 - Web Application Design Considerations
	Bandwidth Usage Considerations
	Use Partial Refresh whenever possible
	Be frugal with controls
	Use graphics sparingly
	Covering the Download with a Splash Window

	Cosmetic Design Considerations
	Using Groups
	Using Images

	User Interface Design Considerations
	MDI window access
	Restricting Edit-In-Place
	Unsupported Windows Standard Dialogs
	Using Command Line Parameters
	Changing the Class for an individual control
	API calls

	Security Considerations
	Using Passwords
	Using a Secure Socket Layer (SSL)

	Using Embedded HTML
	Using references to files in embedded HTML code

	Implementing Help in your Web Application
	Using a Base Document with Mid-Page anchors
	Using individual help Documents

	Windows Controls and their HTML Equivalents
	Hand Coded Applications
	About This Section
	HelloWeb Example Program
	Hand Coded Project Considerations

	12 - IBC Library Quick Reference
	Classes and Their Template Generated Objects
	Quick Reference

	Glossary
	Index

