Internet
Application Guide

Clarion{ j\

2 Internet Application Guide

COPYRIGHT 1994-2003 SoftVelocity Incorporated. All rights reserved.

This publication is protected by copyright and all rights are reserved by SoftVelocity Incorporated.
It may not, in whole or part, be copied, photocopied, reproduced, translated, or reduced to any
electronic medium or machine-readable form without prior consent, in writing, from SoftVelocity
Incorporated.

This publication supports Clarion. It is possible that it may contain technical or typographical
errors. SoftVelocity Incorporated provides this publication “as is,” without warranty of any kind,
either expressed or implied.

SoftVelocity Incorporated
2769 East Atlantic Blvd.
Pompano Beach, Florida 33062
(954) 785-4555
www.softvelocity.com

Trademark Acknowledgements:

SoftVelocity is a trademark of SoftVelocity Incorporated.

Clarion™ is a trademark of SoftVelocity Incorporated.

Btrieve® is a registered trademark of Pervasive Software.

Microsoft®, Windows®, and Visual Basic® are registered trademarks of Microsoft Corporation.
All other products and company names are trademarks of their respective owners.

Printed in the United States of America (0804)

Contents 3

Contents:

INEFOAUCTION et e e e e e et e e e e e e e eeeeees 7
What is WebBuilder and Internet CONNECE?uvviiiiiiiiiiieeeece e 7

Clarion Internet Technologies and the Clarion Development Environment 8

What YOU'll Find in thiS BOOK......cccciiiiiiiiiiiiiee et 9

Where to Find More INfOrMatioN...........occueiiiiiiiiie e seeee e 10
Documentation CONVENTIONSuuiiiiiiiiieeiiiiee ettt e et e e st ee e stbeeeessabeeeesssbeeeessnneeeeeanes 11
Typeface CONVENLIONS..........uuiiiiie et e e e s e e e e e e e s et e e e e e e s s e naarre e e e e e e e s s e eannrees 11
Keyboard CONVENTIONSoiiiiiiieeiee et e e e e e s s e e e e e e e e s s tee e e e e e e e s snnnnaeneeaeeeeanns 11
Product INFOrMALIONciiiiiiie et e e st ee e s snbeeeesanes 12
Registering ThiS PrOGUCTc..eiiiiiiiiiece e 12
TECHNICAl SUPPOIT....eieiiiiii et 12

1 - Web-enable an Example Application ..., 15
T 10T [T 1o o SRRSO PRRRR 15
SEAtING POINT ...t s s e e e e nens 15

2 - Web vs Windows AppPliCatiONScoooevieiiiiee 23
T 10T [T 1o o SRRSO PRRRR 23
WHhat IS @ SKEIEIONT?...ccii e e e e e e e e e ennes 23

WAt IS TSSCRIPT 2 ..ttt e et e e e st e e e s st e e e e staeeeeantaeeaeans 23
Dynamic VS. STAtIC HTIML ...ttt e e e e e e 26

The APPlICAtioN BrOKETueiiiiiie e e e 28

3 - WED TeMPIALES ..o 29
Web APPlICAtioN EXIENSION ..ocoiiiiiiiiiiieee ettt e e e e e e e b eeeaaeeeas 29
Web Procedure EXIENSIONcoiiiiiiiiieiee ettt e e e e e 36
Frame Procedure MDI OPLONS ...ttt e e e 48

PN o] o] o= L1 To] o TN 1Y, 1= o 11 SR PERPR 48

PaY o] o] o= 11 To] o TN o To]] o = U SERP 49

(Of0 o (ST =T a3 o] =1 =1 SRR 50
Dynamic HTML Code TEeMPIALEcceeeeiiiiiiiiieiiie ettt e e e e e e e e e snnree e e e e e 50

Static HTML Code TeMPIALE ... e e 50
GetCookie Code TEMPIALE ..ottt 51
SetCookie Code TEMPIALEcooiiiiiie e 51
Cookies (Persistent CHENt DAtA)cceeiieriieiiiiiie ittt 52
AddServerProperty Code TemMPIALEoeeeiiiiiiiiiiii e 53
GetServerProperty Code TemPIate ... 53
RedirectToPage Code TeMPIALEcooii i 54

V=T o] CTgTo | b 1=T 0 £ o] o [PPSR 54

RTAY =T o] LAY F= U =T =Y RSP 55
RVAT/=T o] 111 o TP 56
WEDSROWHILSceiiiiiiie ettt e et b e e e s nbbeee e e 58

WebGuardProc Procedure EXIENSHIONcuvveiiiiiiiiieiiee e 65

Internet Application Guide

RTAY =] ¢ Y17 (o S PURRRP 66
DElEtEVISIIOIPIOCESS ...cciiiiiiiittii ittt ettt e e e ettt e e e e e e s nbbbseeeaaaaeaaans 69
O I 1S O = 4 1 = PSR UPRS 71
T 10T [0 T 1o o SRRSO PPRRRR 71
] CC] (] (o] LS PR PP UTP PP 71
LIRS 35 1ol 1 PRSP PPPRRPN 74
Y N I Vo 1= SRR 77
WEDSLYIE EXAMPIES ..cooiiiiiiieeee e e e e e e e s s s st e e e e e e e e e aan 79
5 - SKEIetON GUIAE ... 81
1] (o o (U T3 o] o PSPPI 81
Where are the SKeleton fileS?cuvvii i 81
SUMIMIBTY . eeeeeeieeiieieett ettt ettt ettt ettt ettt e ee e eeeeeeeesesese s s se s s sses s e esesssssssssssssnsnsnnesnssnnnnnnnnnes 116
6 - Common QUESLIONS aNd ANSWELScciviiiiieeeeeiii e 118
] (o o [N T o] o RSP SRTPPR 118
(070] 10100104 @ 10 =1) 1 o] o P PRUPRt 118
How do | set background colors for pages in my application?ccccccevevvevvviennnnn. 118
How can | set a default fONt? ... 119
How can | implement Cascading Style Sheets?........ccoccveiii i 119
How can | have an image with text on a button?............coooeiii e, 120
How can | get better control over size & placement of controls?ccccceeerinneen. 121
HOW CaN | USE MEA-AGS? ... et e e 121
How can | make a pop-up window for data validation?.............ccccccceiiiiiiniiiiiiieenenn. 122

What is the difference between POST and GET and how do | change between the
1LY X R USRRTRPP 123
How can | get server variables and their values?...........ccccccccviiiiiiieeee e, 126
HOW can | Create tOOIIPS? ..ot e e e e s s r e e e e 126
How can | launch a Clarion application from a link?..............ccoeooiiiiieiee e, 126
How can | add email capability to my applicationS?ccccccevvvviiiieeeeie e, 127
7 - Tutorial—Making a Web Applicationcccccceevveiveiiiiiiiee e, 131
Web APPIICAtioN WIZAIUccoiiiiiiiiiiee et e e s rr e e e e s e s reee e e e e e s 132
Creating a Hybrid Web/Windows Application............ccccvurevieee i 132
[D1=T0] o)Vl alo TR i a LT 2Y o] o] o1 o o 136
Faster is Better—Optimizing your Application............ccccoviiieiniiici e, 140
Looks are Important—Adding GraphiCsoccveiiiiiiiieiiiiee e 144
8 - Tutorial— Web-Enabling an Existing Applicationccceevvvvvinnnnn.. 147
Using the Global Internet Application Extension Template.........ccccoooevviieeiiieeeiiiciiieennn. 148
Porting an Application to the Web ..., 148
9 - Tutorial— Advanced Web Programming Techniques 153
USING COOKIESeieeeiitteee ettt ettt ettt e e ettt e e sttt e e s bb et e s bbbt e e s abn e e e s annneeeas 154

EMDEAAING HTIML ...coiiiiiiiieieie ettt e e s snnnee s 159

Contents 5

Covering the Download with @ Splash WIiNdow ..., 164
Using Partial Refresh to Update CONtrolS.........couuiiiiiiiiiiiieeieeee e 168
Restricting ACCESS t0 @ PrOCEAUNEuiiiiiii it 170
PaSSWOId PrOtECLION......cciiiiiiiiiie ittt e e e e e e 170
ReStrCtiNg Edit-IN-PIaCe.........cuuiiiiiiiiiiieiece e e e e s e rae s 174
10 - The Internet Builder Class Templatesccceceovvvvviiciiiie e, 177
The Global Internet Application Extension Template. ... 177
o To (IS =] 111V £ USRS 178
WINAOW SEHINGSeeviiiieiiee e e e e s e e e e e e s s e e e e e e e e s s etnrreeeeaaeeas 178

[[o TR 179

L070] 1110 PR 180
1Y TP RR 181

o A= g Tt o S PPRRR 182

L0 =TS SRS 183
Global Window Component OPLiONSeiiiiirrieeiiiiee ettt 184
1021 o] 1o} o H PP RTTT 184
MBNU .. 185
TOOIBAL ...ttt ettt ettt e oo e ekttt e e e e e e e et b et e e e e e e e e e nnbeareeaaaeaeaan 186

L0 [=T o] Y £ RSP RR 187
ClasSS OVEITIAES ...eeee ettt ettt e e st e e e et e e e e tbee e e e nnbeeeeennreas 187
Internet Procedure EXtension TEMPIALEcceveevieeiiiiiiiiiiie e 188
Yo LIS 11 11T £ OSSN 188
WINAOW SEHINGS ... i e e e e e e e s s e e e e e e e s e nnnaeeeeeeees 189
1= o R 189

L0 0] 011 0] LS SRR 190
Y PSPPSR 192

0 A= g Tt o PSR 192
Individual Overrides for @ CONLIOooii i 195
(D1 o] = | PSPPI 195

o 1 SRR RR 196

BV NS 197
ClASSES .ottt a e eabae e e e anraes 198
Procedure Window Component OPtiONS..........ccccuiiiiieeee et e e e e e s s e e e e e s saneeee s 199
LT o] 1 0] o SR 199
IVIEBINU ..ttt e e e e e e e e e e e s e e e e e e s e e e e e s 200

L0 12T o | N - SRR 201
Frame Procedure MDI OPLIONScooiiiiiiiiiiiiie ettt snnneee s 203
APPIHCALION IMENU ...ttt e e e s snaee s 203
APPLICALION TOOIDATciiiiiiiiiee e e e e 203
L07e o [=T 00T o] Fo 1 L= RO PPPRUPTt 205
Dynamic HTML Code TeMPIALEcoiiiiiiiiiiiiaaeee e 205
Static HTML Code TEMPIALE ... e 205
GetCookie Code TEMPIALEcc.uviiiiiie e 206
SetCookie Code TEMPIALEcccuuiiiiiiiee e 206
Cookies (Persistent ClIENt DAta)ccceeeiiricuiiirieieeeieiiiieereee e e s essrreerreee e s s esnnrneeees 206

AddServerProperty Code TeMPIALEueviviieeiiiiiiiee e 207

Internet Application Guide

GetServerProperty Code TemPIate........coooueiiiiiiiiieiiie e 207

11 - Web Application Design Considerationsccccceeevvviiiinnneeneeeeennnnns 208
Bandwidth Usage CoNSIAEratioNS...........eieiiiiiiiiiiiiee ettt neneee e 208
Use Partial Refresh whenever possible ..., 208

Be frugal With CONTIOIScooiiiiii e 209
Use graphics SParinglyooo e 209
Covering the Download with a Splash Window ... 209
Cosmetic Design CONSIAEIAtIONS..........cccuuviiiiiee st e e e e e s s e e e e e e s s e e e e e e e e s ennnes 212
L0 LS o T T (0T o 1SR 212

L0 LT o LT T T PR 213
User Interface Design CONSIAErationsocccuvviiiiieeiisiiiiiieeee e s s s e e e s serreeee e 214
VDI WINAOW BCCESS ...vviiiiiiiieeiiiieeesittee e sttt e sttt e st e e s ettt e e s snb b e e s ansbe e e e enbeeeeennrees 214
ReStrcting Edit-IN-PIACEcoiiiiiiiiii e 214
Unsupported Windows Standard Dialogs.c.ueveiriiiiieiiiiee e 215
Using Command LiNe Parametersocueiieiiiieieiiiiiee et 216
Changing the Class for an individual control ..., 216
AP CAUIS ...ttt bbb b ne e e 217
Security CONSIAEIALIONSeiiiiiiiei ittt e et e e e e e e e s sbb e e e e e e e e e e nnneeees 218
USING PASSWOITSuiiiiiiiie e ittt e e s e e e e e e e s e st be e e e e e e e s snntnbraeeaaeeeas 218
Using EMbedded HTIMLuuiiiiie et e et r e e e et e e e e e e e snnnnae s 220
Using references to files in embedded HTML COAEcccovviiiiiiiieieciiiiiiiieeeeeeen 221
Implementing Help in your Web AppliCation ..o 223
Using a Base Document with Mid-Page anchors.........cccccccovvvciiiieeeee s 223
Using individual help DOCUMENLSooccuuiiiiiieie s e e e 224
Windows Controls and their HTML EQUIVAIENLES............ceiiiiiiiiiiiiie e 225
Hand Coded APPHCALIONS.........coiiiiiiiiiiiii et 229
ADOUL THIS SECHION ...veeiiiieeeiiieee et e e e e e e eeaeeeeas 229
HelloWeb EXample Programcco i e e e 229
Hand Coded Project CoNSIAErationscoiiiiiiiiiiiiiiieae e 232

12 - IBC Library Quick ReferencCe ..o 233
Classes and Their Template Generated ODbJECtSc.uuueeiiieiiiiiiiiiiiee e 234

(@ 18 1 Tod [R L= (=] (=] [0 PPN 235
GlOSSAY oo e 239

M X oo s 243

Introduction

Introduction

What is WebBuilder and Internet Connect?

Clarion works together with both Internet Connect and WebBuilder to web-enable
database applications so that you can use the same application locally (i.e., under
Windows, Windows 95, Windows 98, or Windows NT) or on the Web using any
JavaScript enabled browser. Internet Connect also requires a Java enabled browser.

This book is provided to give you an understanding of Clarion’s internet technologies.
WebBuilder is a Java-free internet development extension to the Clarion development
environment. Internet Connect requires Java support. This allows you to create web
applications in a product that you already know about. The applications you create can
be compiled to run as a desktop Windows application or to run in an internet browser.

WebBuilder creates pure HTML pages dynamically at runtime based on the designed
application. This product includes Skeletons which can be customized to fit the look and
feel of you applications. Skeletons can be modified without recompiling your application.
Along with Skeletons, TSSCRIPT (a scripting language) is also introduced in this product.

The goal of this manual is to get you familiar enough with some of the basics of these two
technologies in order to make good decisions about your Web applications.

This book assumes you have completed the tutorials in the Clarion Getting Started and
Learning Clarion . If you have not yet done so, we urge you to do them before gettng
started. It is helpful to understand the basic Clarion concepts first. It is also helpful to be
familiar with the way Web browsers work. Some basic HTML knowledge is also useful.
Provided as a pdf file is a simple intoduction to the HTML language.

8 Internet Application Guide

Clarion Internet Technologies and the Clarion Development Environment

Automatic application developer for Windows or Web

When you just need a “simple” application to maintain a database, you can literally do the
job in minutes using Clarion. The key is the database dictionary. If the Application
Generator knows what files or tables you want in the application and how they're related,
it can build an application. So all you need to do is select one or more files then indicate
(when there are two or more files) whether the files have a one to many relationship or a
many to one relationship.

The Application Wizard can then create a full-featured application, and by merely
checking a box on one of the wizard’s dialogs, you can transform the application into a
Web-enabled application. The resulting application can run locally or on the Web using
the Clarion Application Broker.

Visual development environment for Windows or Web

With Clarion, dropping a control in a window gives you a lot more than other Rapid
Application Development tools. These tools typically let you add a user interface control,
but then expect you to write the code to implement its functionality. With Clarion, you add
a template, which contains the control, data, and executable code. That means you don't
have to write code—one click places a complete business solution: a user interface
control and the code that enables it to do its job. Moreover, each template has its own
user interface. When you view the properties for the template, you'll see an “Actions” tab.
By checking a box, choosing a dropdown list item, or filling in an edit box, you can
customize the behavior of the template so that it meets your needs exactly. You'll set
“Actions” for the templates at many places in the longer tutorial in this book.

When you use the template interface to specify these behaviors, the Application
Generator writes the code (Clarion language source code) that implements the behavior
for you. Using the templates, you can do an awful lot of custom programming without
writing a single line of source code.

This paradigm extends to the web implementation of your application. All of the
underlying functionality is transformed to represent your application inside a browser.
Concurrency checking and referential integrity are automatic in your application and are
enforced over the web in a similar manner. Additional Internet Options allow you to
control event handling so that you can specify the conditions under which an event is
processed on the server.

Introduction 9

What You'll Find in this Book
The following lists the chapters of this book and summarizes its content:

Part —WebBuilder

Making a Web-enabled application

Chapter One: This chapter covers how to web-enable an application. It leads you through
the process step by step. Some deployment steps are also covered so you can test your
web-enabled applications.

Differences between Web and Windows applications

Chapter Two: This chapter discusses the placement of controls in a Windows application.
It also covers the difference in static vs. dynamic HTML. This chapter also introduces you
to skeletons and what they are.

Web Template Guide

Chapter Three: This chapter documents the Web templates.

TSSCRIPT

Chapter Four: This chapter introduces TSSCRIPT, the scripting language that is used to
create runtime HTML pages.

Skeleton Guide
Chapter Five: This chapter provides a reference to the skeleton files. It explains each
skeleton and it's purpose.

Common Questions

Chapter Six: This is the chapter where everything comes together. These questions
have been gathered from several sources including the newsgroups. A solution is
provided with each question.

Part Il—Internet Connect

Application Wizard Tutorial
Chapter Seven: A few quick steps with the Application Wizard allow you create to a
complete web application in five minutes.

Web-enabling an Existing Application
Chapter Eight: Using the IBC templates to port Clarion applications to the Web.

Advanced Web Programming Techniques

Chapter Nine: Introduces the customization capabilities offered by the IBC templates. It
walks you through modifying your application for optimal performance and functionality
on the web.

10 Internet Application Guide

Using the Internet Builder Class (IBC) Templates
Chapter Ten: A reference to the IBC Template interface.

Application Design Considerations
Chapter Eleven: Tips and technigues on web-based application design.

Internet Builder Class Library- A Quick Reference

Chapter Twelve: A quick guide to the template implementation of the objects in the
Internet Builder Class (IBC) Library. This chapter lists properties and methods commonly
used in web-based applications.

Glossary
Glossary of terms

The PDF versions of all manuals are indexed to allow fast searches across all manuals
(requires Acrobat Reader with Search).

Where to Find More Information

The Application Broker manual is the guide to installing, configuring, and using the
Clarion Application Broker.

The PDF versions of the manuals are indexed to allow fast searches across all manuals
(requires Acrobat Reader 3.x with Search; the installation program is on the CD).

Important: if any part of the online help text conflicts with the printed
documentation, the information in online help should take precedence. SoftVelocity
makes every reasonable effort to ensure the printed documentation is up to date.
However, the lead-time required by printers may create a lag in the documentation; while
we can update the online files that ship concurrently with a product revision, printed
materials must “catch up” later.

Introduction 11

Documentation Conventions

Typeface Conventions

Italics Indicates what to type at the keyboard, such as Enter This. It is also used
to identify the title bar text of a window.

CAPS Indicates keystrokes to enter at the keyboard, such as ENTER or
ESCAPE, or to CLICK the mouse.

Boldface Indicates prompts or options from a pulldown menu or text in a dialog
window.

Courier New Used for diagrams, source code listings, to annotate examples, and for
examples of the usage of source statements.

Keyboard Conventions
F1 Indicates a single keystroke. In this case, press and release the f1 key.

ALT+X Indicates a combination of keystrokes. In this case, hold down the ALT
key and press the X key, then release both keys.

12 Internet Application Guide

Product Information

Registering This Product

Before you begin using your Clarion internet product, be sure to fill out and mail in the
registration card that came in the package. This Business Reply Card makes you eligible
to receive several important benefits. Once registered, you can use SoftVelocity’'s
Technical Support services and you automatically receive new product announcements
and update alerts.

Technical Support

Help can be obtained from several different online newsgroups. Our web site,
www.softvelocity.com, details the available technical support plans.

Usenet Newsgroup--comp.lang.clarion

You can participate in the Clarion Usenet Newsgroup on the Internet--comp.lang.clarion.
In this newsgroup, Clarion programmers from around the world exchange ideas and
techniques. Log into your News Server and subscribe to comp.lang.clarion. If your news
server does not carry the feed, you should contact your Internet provider.

SoftVelocity's product newsgroups

SoftVelocity's internal newsserver offers newsgroups for all SoftVelocity products. To
subscribe to these groups use news.softvelocity.com as the news server. There are
several newsgroups you can subscribe to on this server.

SoftVelocity's Web Site:

You can find other Clarion resources on the Internet by visiting SoftVelocity's site on the
World Wide Web:

http://www.softvelocity.com

Paid Technical Support

Paid telephone technical support is available. Refer to the SoftVelocity web site for the
most up to date information on the available technical support plans.

Example Application

Part |

WebBuilder
Technology

14

Internet Application Guide

Example Application 15

1 - Web-enable an Example Application

Introduction

This chapter goes through an example web-enabled application like an annotated
example.

It covers the templates used, which settings were used and why. It also covers running
the application and what you should be seeing when you do.

Upon running the application, some areas may not look right. How does one fix them?
This part covers the skeletons, how to change themes and walks through a small
skeleton to show what it does. We will also look at the generated HTML code in your
internet browser while the application is running.

Starting Point

Start Clarion. Open the example Web application (Weblnv), located in the
\Clarion6\Examples\WeblInv\ folder. Your desktop should look like this:

4 Clarion 6.0 (WebInv.app) - [WeblIn¥.app - Application Treefié 10 x|
File Data Modeller Edit Application Procedure Project Setup ‘Window Help =1

=Nl I
v X @ R ¢

Pragedure |Module| Template | Mame | Category_l Modﬁiedl _Dm

I -El Data
+-[Window
-[El Embeds
+-_| Estension

=8 & BrowseCustomers [Browse] - Browse the Customers File with "'Filker Lo

4. &l UpdateCustarmers [Form] - Update the Custarmers File
&] SelectStates (Browse] - Browse the States File and Edit-in-Plac

-8l Browselrders [Browse) - Browse the Orders File

> & EBrowseDetailz [Browse) - Browse the Orders File

&l PrintSinglelrvoice [Fepart] - Prints Single Irvoice for Selected arde

- 8] BrowseProducts [Browse] - Browse Products File [Editln-Place and cal

&] FrintSelectProduct [Report] - Report the Products File
@] Printrvaice [Repart) - Frintz Irvecice for each arder
&) SplazhScreen [Splazh]

4 » A1 3

The first stop is the Global & button, and the Extensions button therein. This is the
place to set all the defaults for the application. You will see the Web Application
Extension highlighted. This extension is required for all web applications.

Internet Application Guide

7 Extension and Control Templates - 1ol x|

[Show on Global Propertiss

Window |MDI | Advanced | Global Objects | il
Skeleton Selection
Theme: | Default

Wfindow Skeleton to use: |

Extra capabilities:

4 4

Inzert | Delete |i}| il
Help |

Cancel | Apply |

This is the dialog where global extension templates are added to the application. As
shipped, there are 3 themes for your Web applications, the default is used here.

Detailed information about the template dialogs is in the Web Template chapter.

Select the Advanced tab.

7% Extension and Control Templates o] |

[Show on Global Properties

‘whindows | MDI Advanced | Globsl Objects { Al
Application
Enable dual mode application
Page ta return to on exit; |inde:-c.hlm
Time out [zeconds): 00 =

Sub directory for pages:

Sub directony for skeletons:l Skeleton
[Usze Cookies Rather than M1 File

4 4

Ingert | Delete | il il
Help | Ok Cancel Apply

Example Application 17

This dialog shows the time out value. The timeout value means if there is no activity (like
a keystroke) detected in the specified number of seconds, the application will
automatically terminate. Depending on your use, you may adjust this setting to a higher
or lower value.

Press the OK button until you return to the application tree. If you add this global
extension to an existing application, it causes a procedure extension template to be
added to every procedure in your application, with the defaults.

Highlight the Main procedure. On the right hand of the Clarion desktop, expand the
Extension tree, if it is collapsed. You do this by clicking on the plus sign. You will see a
Web Procedure Extension template entry. RIGHT-CLICK on it and then choose
Properties from the popup menu. You should see this dialog:

7% Prompts for WebProc x|
“wfindow |Bep0rt I Controls I DI I F'rupertiest 3]

] Cancel
Skeletan b Lge; Help |

Theme: Default

Exrtra capabilities:

— General
[Retum if launched from browser

This dialog, the Web Procedure Extension, is similar to the global Web Application
Extension. There are some template prompts that allow your application to have desktop
specific vs. Web specific functionality.

If you recall, Clarion builds a default menu for you. Some of these menus should never
be seen by a Web application. Choose the Controls tab.

18

Internet Application Guide

7% Prompts for WebProc x|
‘Window | Beport Contrals |EIDI |P'rcuperties{' L Ok I
~ Individual control options Cancel

SRiletenuy [c edl
YPrintSetup
7 it Help |
YEditkenu [changed)
TCut
Copy
"Paste
?"u'»:’inu:h:uwMenu [changed] j
Froperties |

You can see that some of the controls are changed from the defaults (which is to include
everything from a desktop application). Press the Properties button for the first item in
this list, ?FileMenu. The following dialog appears:

g Individual Override for ?FileMenu

x|
Display IHtmI | Eventsl F'mpertiesl I:I_assesl
— General Cancel |
¥ Hide if launched from Browses

Skeleton Selection
Skeleton o uze: | Help I

Therne:

Extra capabilities:

Type of field:

The check box, Hide if launched from browser means that when this application is
launched as a Web application, the menu is hidden. It is visible if run as a desktop
application.

This is used because the normal “File” menu is not applicable when running in a browser.
There are other menu items that have also been changed. If you look closer, you see the
menus are not changed. This is not needed as hiding a menu will hide all items in it. The
other menus that should be hidden are the “Edit” menu (where you normally find Cut,
Copy, Paste, etc) and the “Window” menu (where you find the Tile, Cascade, and list of
open windows, etc).

Press the OK button until you are back at the application tree.

Example Application 19

Select the Splash procedure at the bottom of the tree. Open the Web Procedure
Extension template like you did previously. Choose the Controls tab. Press the
Properties button for ?String2, then choose the HTML tab. You will see this dialog:

g Individual Dverride for ?String2

Dizplay Himl |Events| F'ru:upertieleI_assesI

HT kL befare control Cancel
kCEMTER:<FONT="M5 5&M5 SERIF'"> ﬂ

i

Help

hd

—HTHL after contral
</CENTER:</FOMT: B
hd

This is where you can add static HTML code before and after the control. In this case,
center the text, change to MS Sans Serif font with the bold attribute. The after control text
box are the required ending HTML tags. If the end tags were not entered here, then every
control appearing afterwards will inherit these changes. This is usually not the desired
effect.

The other changed controls are the same. Press the OK or Cancel button to return to the
application tree.

Select the BrowseCustomers procedure and open its Web Procedure Extension
template. Choose the Controls tab. Scroll down until you see ?Browse:1 (Changed).

20

Internet Application Guide

% Prompts for WebProc x|

Windnwlﬂepnrt Controls |EIDI |F'rcuperties{' |- Ok

Cancel |

— Individual control options
TCUS: Company [changed) ;I
7T ah:h

PCUS: State: Prompt Help |
PCUS:State [changed]
“Rrowse: 1 [changed]
?Select: 2

Plnzert: 3

?Change: 3 ;I

FProperties |

Open its properties and choose the Events tab. You will see this dialog:

7% Individual Override for ?Browse:1 x|

Digplay | Himl Ewents |F'r|:||:|erties | El_assesl Ok,

v Feiresh when changed Cancel |
Help |

This is a powerful feature for Web applications. When any column in a listbox changes,
the page is refreshed. This means that the listbox will always display the correct values in
the browser. Close the dialog and look at the other changed controls. They also have this
box checked. This is because of the strings on the window of the procedure.

Close all dialogs until you come back to the application tree. Now let's look at a way of
embedding HTML code in embed points.

RIGHT-CLICK on the BrowseCustomers procedure and choose Embeds. Press the
Show Filled Only and Expand Filled icon buttons on the embed toolbar. You should
see something similar to this:

Example Application 21

7 Embedded Source: BrowseCustomers _ 1Ol x|
Exit Edit Wiew Mavigakte

MR EEG E TR

| Inzert |
S8 3 Intermet, after the opening <BODY> tag

&) SOURCE [center table and make it BOD pixels]

=] Intemet, before the closing </BODY tag Delete |

"8 SOURCE [closing tags] Friarity———
umﬂ

The two Internet only embed points are clearly visible. The first embed, Internet - after the
opening <BODY> tag has this code in it:

I center table and make it 600 pixels
TARGET .Writeln("<div align="center''><center>")
TARGET .Writeln("<Table width="600"><TR><TD>")

Writeln is a method that sends text into an open document. What is happening here is
that we want the list box centered in the browser and with a restricted width so it looks
like the desktop version. This embed is not required for the functioning of the application,
but it clearly looks better.

The next embed, Internet - before the closing </BODY> tag has this source:
1 closing tags

TARGET .Writeln("</td></tr></Table>")
TARGET .WriteIn("</center></div>")

Since the tags in the first embeds require closing tags, the same technique is used to
insert them into the HTML generated page, at the proper point.

Press the OK or Cancel buttons until you return to the application tree.

Feel free to look at other procedures and their settings. For information on the
deployment of this application to your browser, refer to the tutorial sections found later on
in this document.

These areas are not the only way to accomplish the desired effect. There are many other
ways. The rest of this book covers some alternate methods. As you may have come to
expect from using Clarion tools, there is seldom a single correct way to do a task!

22

Internet Application Guide

Web vs Windows Applications 23

2 - Web vs Windows Applications
Introduction

This chapter asks and answers some basic questions as well as introduces the concept
of skeletons, the scripting language used in the skeletons and how you could use it.

Also, how does one use HTML in Clarion applications? Must one use the skeletons?
What is the role of skeletons and what is TSSCRIPT? How does the broker fit in?

What is a Skeleton?

Simply put, a skeleton is an HTML file with a scripting language embedded in them. The
role of these scripts is to take the window controls and their attributes and dynamically
merge them with the skeleton to generate the correct and functioning HTML code at
runtime.

What is TSSCRIPT?

TSSCRIPT is the scripting language used in the skeletons. The scripts themselves are
useful, but in the traditional Clarion style, there are underlying objects with template
interfaces.

Here is an example. Suppose you want to use a column in a table that stores a
customer’s email address? You can take advantage of TSSCRIPT to accomplish this.
First, here is the interesting bits from the email skeleton (hotstring.htm):

<meta name="ts-control’ content="sstring">
<meta name='ts-capabilities" content="email'>
</head>

<BODY>
<I-- HotString.htm -- Start -->

Notice the ts-capabilites and the content. Now, let’s inspect the template dialog for a
individual control override:

Internet Application Guide

Individual Override for 2CUS: Address2

Dizplay |Html | Eventsl F'r-:upertiesl El_assesl

—General Cancel
[Hide it launched fom Browser

Skeleton Selection

I

Skeleton to use: | Help |
Therme: |

Extra capabilities: | ermail

Type of field: |

There is a template prompt and a value to set in order to apply this to a control. You
should also notice that the ts-control defines the content of the email control to be a
STRING (the type of string is unimportant).

Simply place the string control on a window (like a browse procedure). When you run the
application in a browser, it will look like this:

A Browse Customers - Microsoft Internet Explorer

J File Edit Wiew Favorites Tools Help |
J*-*,@ﬁ@@@%-é@,@”
Bachk Forard| Stop Refresh Home Search Favarites History Mail Frint Edit Real.cam
| address [@] hitp://127.0.01/50/NVOICE. harl | 6o “Links &] Customize Links »
Browse Customers
FullName Company. State
Last Mame:
First Name MI Last Name Company State
@ Larry H Brown ATT FL
© Charmaine A Curry Encore Computers FL
© Glaria E Edwards Howard Johnson's Inn A
© Mary B Edwards Channel 7 News FL
© Harvey L Henry ATET OH
« Phillip M Jacobs BCC MY
© Michael L Johnson BellSouth FL
© Jennipher B Jones IEM MY
M <4 4 » p» M
+ a -
Customer's Address:
A5 MY 35th Strest
Info@ATT.com
STl saons g 1
Phone Murmber: |(EE1) 284-5359 Orders Close
=l

Web vs Windows Applications 25

And if you click on the link, your default email client is launched:

i New Message _ O] x]

File Edit Wiew Insert Format Tools Message Help |

|
J%‘ééig».n

e v o ¥ .| B E3 -
Send [Et Copy Faste Unda Check Speling | Attach Priority Sign Encrypt Offine | Inzert ...
Fram: I clarion@develop.com (pop3. domain.com) j

To: Iinfo;@TT.com
Ce: |
Boo: |
Subject: I

The generated HTML looks like this:

<I-- HotString.htm -- Start -->
inFo@ATT.com

This is one way to make a very simple change via the templates, with no embedded code
to get the desired feature.

So where do the skeletons come in? The skeletons are covered in detail in a later
chapter, but here is how this works. We'll start where we left off in the skeleton:

<I-- HotString.htm -- Start -->
<TSSCRIPT tag=a attr=href replace=NAME value=Contents>

<TSSCRIPT value=Contents>
</TSSCRIPT>

</TSSCRIPT>

Compare the above with what was generated at runtime. You can start to see how
TSSCRIPT works. The first line is says that it needs an anchor tag (that is the tag=a
attribute), and the anchor tag has an attribute of HREF. It also declares the replace
variable, called NAME and a value variable called CONENTS.

The next line is psuedo-HTML code for an email anchor. The actual replacing is done in
the next TSSCRIPT line, where it parses the whatever the value of the Contents is. The
rest of the lines are the required end tags.

So you have the correct anchor tag for the email generated as shown above.

26 Internet Application Guide

Dynamic vs. Static HTML

You can use either one you feel fits the need, but best results can be achieved when you
use both.

What if you have a column in one of your tables that stores a customer’s email address
(as long as we are on this theme), and you want to display this email address as you
scroll through the rows on your browse list. But even better, suppose as you scroll
through your list, you can simply click on the displayed string to start your email client.

You have a local string variable called DisplayString and it is somewhere on your browse
window (not in the list itself). You would want this populated with a “friendly name”, like
“Joe Q. Smith”. However, you want this to appear as a link and if you click on it, an email
is started.

The local variable, DisplayString is populated everytime a new selection in the list is
made. In other words, as you scroll up and down the list.the SetQueueRecord embed is
used. You could code something like this:

DisplayString = "Reply to " & CLIP(CUS:FirstName) & CUS:LastName

This ensures the string has the proper data visible. However, what we want is to make an
email anchor. This is done with HTML code, but some of this needs to be dynamic, like
the email address of the person we are sending email to.

In this case, you can use the DynamicHTML code template. You want to put it before the
control of ?DisplayString. There is an embed for that (as well as all controls populated on
a window).

The Dynamic HTML code template looks like this:

Prompts for DynamicHTML |

Thiz template allows vou to add dynamic HTRL
Dwnarnic: Text: | J

Cancel

Help

dlid

You could enter the following into this template:

"<<a href="mailto:" & CLIP(CUS:Email) & "?Subject=The next
DevCon'>"

Tip

Web vs Windows Applications 27

Pressing the ellipsis button will open the variable selection dialog. The use of this lookup
is not required.

The next step is to add static HTML code as you will need some code that will never
change. This is ideal for end tags. Simply find the Internet embed after generating HTML
for the control.

Again, you can use a code template, in this case the StaticHTML code template. Just
enter the HTML code you wish to insert after the control.

Promptz for StaticHTML Ed

—HTML to inzert
0 =]

Cancel

I

Help

d

When you are done, your embed tree will look similar to this:

75 Embedded Source: BrowseCustomers Y] |

Exit Edit ‘Miew Mavigate

%D nawaas
| Inzert |

4 Intemet, after generating HTHL for control Eropetties
- 'El ?DizplaySting
LB Static HTML:

+- %] Intemet, after the opening <BODY tag Priarity———
g3 |ntemnet, before generating HTML for control A I E |

i

Delete

DizplaySting Iﬁ‘
----- [SR Cynamic HTH a href="mailto:" & CLIP[CLUS:Emai t=The he ! 0=
+- ¥ Intemet, before the closing </BODY: tag r Cajumnn 1
4 Local Objects
-8 Abc Objects Source
= @ Browse on Custamers using ?Brawse: 1 [BrowseClass) Filed
--[g@ SetlueusFRecord FROCEDURE WIRTUAL =

#] CODE

: i
.. 8] SOURCE [DisplaySting = Freply to ' & CLIFCUS FirstName] & CLUS:LastName) il

dd

1] | + Help

[Internet, before the closing </BODY> tag

Now you have your link. There are other possiblities you can use with these templates
and skeletons.

28 Internet Application Guide

The Application Broker

There are two forms of the Application Broker. The linked in (executable) broker is used
for testing your web developed application. This is automagically linked in when you
compile and run an application with the Web templates.

For more details about the Application Broker and various deployment steps, see the
Application Broker manual. What is the Applicaiton Broker? What does it do?

Examine the following diagram:

Clarion Skeletons

application

Requests,
keystrokes, ete

This shows that the broker gets its data from two sources, the Clarion application and the
skeletons. It then passes data (HTML pages) to a browser so the user can interact with the
program.

Web Templates 29

3 - Web Templates
Web Application Extension

The Web Application Extension is a global template that Web-enables a Clarion
application. It adds the functionality of generating dynamic HTML when the application is
accessed through the Application Broker. This template allows you to specify the options
to use when generating an HTML representation of your windows and reports.

F; Select Extension ' x|

| | Select I
-~] Clazz SWBuzsinezsFules - SYBuzsineszFules -
E GlobalBuzinezzRuleskd anager - Global Business Rules kM anager

- _| Clazs SVGraph - SWGraph
E SWGraphGlobal - Graph Global Extension

~] Clazz SWReportToHTMLSupport - Beport To HTML Suppart Help
E SWReportToHTkLGIobal - Repart ta HTML - Global

-] Clazsz SWReportToPDFSupport - Repaort To POF Support
E SWReport ToPDFGlobal - Report to POF - Global

~] Clazz SWReportToT=TSupport - Report Tao TAT Suppart
E SWReportToT=TGlobal - Repart to TET - Global

-] Clazz SWReportT ox<MLSupport - Report To =ML Support
E SWReportToxMLGlobal - Report to ML - Global

~] Clazz'eb -‘web Builder Templates w21
E Wieh - Web Application Extension

| o

In addition, it automatically adds the Web Procedure Extension to every existing
procedure in your application and any procedures subsequently added to the application.
The Web Procedure Extension allows you to override many of the global options for a
specific procedure.

LCancel

i

This template allows you to customize the global appearance and behavior of your
application when it is executed over the Web. The settings you specify here are global in
nature; that is, they affect every procedure in your application.

You can override most of these settings on a procedure level using the Web Procedure
Extension’s settings. In addition, some options can be specified on a control-by-control
basis. The combination of these three levels of customization provides you with complete
flexibility of design.

30

Internet Application Guide

Window Settings

Skeletons are a collection of HTML files that contain all the information needed to control
the construction of the delivered HTML pages. These files consist of true HTML code
along with the TSSCRIPT scripting language.

1 Extenzion and Control Templates Hi=] B3

[Show on Global Praperties

window |MDI | Advanced | Global Objects} 2l»]

Skeleton Selection
Therme:

‘window Skeleton to use; |

Extra capabilities: |

The Window tab allows the global setting of the skeleton to be used for the basic window
design of your application’s windows.

Theme

Skeleton files can be categorized into common themes or styles so all window
representations in a theme have a common look and feel. Specify the default window
theme here.

Window Skeleton to use

Specifies the default window skeleton to use. This is normally a modified version of
WINDOW.HTM skeleton from the supplied skeleton files.

Extra capabilities

Specifies extra capabilities of one skeleton versus another. The capability is specified
here.

Web Templates 31

MDI Settings
This section determines the manner in which Application Menus and Toolbars are
handled.

£ Extension and Control Templates H=] E3

[T Show on Global Properties

window MDI | advanced | Global Objscts { Al

—Frame Menu
Inelude On Child 4indaves: | EELEERMERE

[™ lgnore code in frame's ACCERT loop

—Frame Toolbar
Include: On Child 'indavs: [Mo T oolbar tems 3|

[T Ignore code in frame's ACCEPT loop

Far more options zee the internet options an the frame
procedure. This will allow pou to choose which
contrals from the frame are present onto child dialogs.
You can alzo select whether to re-use the code in the
frame's ACCEPT loop.

Tip

For control over specific Menu or Toolbar items, set the MDI overrides in the Frame
Procedure’s Internet Options.

Frame Menu

This section determines the manner in which Application Menus are handled. This allows
you to specify which global menu options are displayed on “child” windows.

Include on Child Windows
Select an option from the drop-down list. The choices are:

All Menu ltems All menu choices appear on child windows.
No Menu Items No menu choices appear on child windows.

Ignore code in frame’s ACCEPT loop

Check this box to ignore any code in the Application Frame’'s ACCEPT loop for menu
items. If not checked, any embedded code implemented in the Frame’s ACCEPT loop is
automatically implemented in the child procedure.

32

Internet Application Guide

Frame Toolbar

This section determines the manner in which Application Toolbar controls are handled.
This allows you to specify which global Toolbar controls are displayed on “child” windows.

Include on Child Windows
Select an option from the drop-down list. The choices are:

All Toolbar Items
All Toolbar items appear on child windows.

Standard Toolbar Only
Only the Standard Toolbar items appear on child windows. These are the buttons
added by the FrameBrowseControl template.

No Toolbar Iltems
No Toolbar items appear on child windows.

Ignore code in frame’s ACCEPT loop
Check this box to ignore any code in the Application Frame’s ACCEPT loop for toolbar

items. If not checked, any embedded code implemented in the Frame’s ACCEPT loop is
automatically implemented in the child procedure.

Advanced tab

L Extenzion and Control Templates O] =]

[Show on Global Properies
indow | MDI Advenced | Global Dbjects | Al
Agiization

[l “+'eb Application Extension

Page ta iebuin lo an sxk |

Time ouk [secands) [enn =
Sub diectom for pages: |

Sub deecton for sketesons: | Shakton

[Uz Cookies Rather than INI Fle

Web Templates

33

Page to return to on exit
Optionally, specify the HTML page to return to when the program ends. The template
generated code calls the WebServer.Init method to set the WebServer.PagetoReturnTo

property.

Time out (seconds)

This specifies the maximum amount of idle time (measured in seconds) before an
application closes. The default is 600 seconds (10 minutes). The template generated
code calls the WebServer.Init method to set the WebServer.TimeOut property.

Sub directory for pages

The directory in which the application creates temporary directories (a temporary
directory is made for each active connection) to write the dynamic HTML and graphic
files. This is also the directory in which to deploy graphic files. If you provide a graphic in
this directory, it is not extracted and written to the temporary directory. This defaults to
/PUBLIC. The template generated code calls the WebFilesManager.Init method to set
the property. It is not appropriate to set this property at runtime.

Sub directory for skeletons

The directory in which the application skeleton files are stored. This defaults to
SKELETON. The skeletons must be available at runtime. Multiple directories may be
specified. They are separated by a semicolon (;). The template generated code calls the
AddSkeletonDirectory method to set the path.

Use Cookies Rather than INI File
Check this box to use cookie files instead of an INI file for storage of data related to a
web site.

Internet Application Guide

Global Objects tab

The Global Objects tab lets you specify which classes (objects) the templates instantiate
globally in your application to accomplish various tasks, and the source modules that
contain the class definitions. This approach gives you the capability to use as much of the
WABC Library as you want and as much of your own classes as you want.

£ Extension and Contiol Templates _ (O] =]

[T Show on Global Properties

weh Application Extenzion

window | MDI | Adyanced Globsl Dbjects { al»

Application Broker
HTHML tanager

|
|
“web Files Manager I
wieb Server I
|
|
I

Shutdowin kanager

web File Access

Eackie kManager

To change the class for an item or override the class, press the button for the class you
wish to affect.

Web Templates 35

Classes tab

The Classes Tab lets you specify which classes (objects) the templates use to
accomplish various tasks, and the source modules that contain the class definitions. This
approach gives you the capability to use as much of the WBC Library as you want and as
much of your own classes as you want.

£ Extension and Control Templates O] x|

[Show on Global Properties

) Application E

Global ‘web Objects
Frocedure ‘web Objects

ABC Complex Contral kanagers

Global Control Clazs Overides

MDI | Advanced | Global Objects Classes | Az
|
|
|
|
"wieb Library Files |

To change the class for an item or override the class, highlight it in the list, then press the
Properties button.

36 Internet Application Guide

Web Procedure Extension

This template allows you to customize the appearance and behavior of a procedure when
it is executed over the Web. The settings you specify here are local in nature, that is they
affect only this procedure. To change Global Settings: press the Global Icon Button on
the Application Generator, then press the Extensions button, and modify the settings for
the Web Application Extension.

To modify the settings, press the Internet Options button on the Procedure Properties
window.

Window Tab
Skeletons are a collection of HTML files that contain all the information needed to control

the construction of the delivered HTML pages. These files consist of true HTML code
along with the TSSCRIPT scripting language.

Internet Options. .. Ed |

Windao |Bep-:|rt I Contralz I 5 ull | F'rn:-pertiesi L s

Cancel

—Skeleton Selection
[Ovemde dobal zefings

Skeleton bo uze: | Help |

Therme: |

Extra capabilities: |

—Eeneral
[Betum if launched from browser

The Window tab allows you to override the global skeleton settings for this procedure
only. The change will not affect any other procedure.

Override Global settings
Check this box to override the Window settings in the global Web Application Extension
template. Checking this box enables the prompts below.

Skeleton to use
Specifies the default window skeleton to use. This is normally a modified version of
WINDOW.HTM skeleton from the supplied skeleton files.

Theme

Skeleton files can be categorized into common themes or styles so all window
representations in a theme have a common look and feel. Specify the default winodw
theme here.

Web Templates 37

Extra capabilities

Specifies extra capabilities of one skeleton versus another. The capability is specified
here. This is referring to a TSSCRIPT property. This is covered in more detail in Chapter
Six of this guide.

Return if launched from browser

Check this box to disable the procedure when the application is run over the Web. This
allows you to remove functionality for the Web version of your application without
removing it from the Windows version.

Report Tab

The Report tab defines how the report title and page number will display on the
generated HTML page. By default all internet reports will contain a toolbar at the top of
the generated HTML page. This toolbar give the following functionality:

First Page, Previous Page, Next Page, Last Page, Zoom In, Zoom Out, One Page, Two
Pages, and Exit.

The reports tab contains the following template prompts:

Previewer Window Title

Specifies the title of the report should display in the report preview window. This title will
display in the internet explorer window title as well as at the top of the HTML page above
the report. This must be a string.

Include current page in title?
Check this box to display the current page number in the report previewer window as well
as at the top of the HTML page above the report.

Show total Pages in title?

Check this box to display the total number of pages in the report previewer window (next
to the current page number) as well as at the top of the HTML page above the report
(next to the current page number).

38

Internet Application Guide

Controls Tab

?'D:upy
FPaste
?Winu:luwMenu [changed)

Froperties |

Individual Control Options

Internet Options. | x|

Cancel

[[E= |
Help |

Hightlight a control in the listbox and press the Properties button to modify

specific control options.
Display
Individual Override for ?FileMenu

Display |Htm| | Evental Propertiesz I El_aasesl

—aeneral
v Hide i launched from browses

Skeleton Selection

Skeleton to uze:

Theme:

Extra capabilities:

Type of hield:

Skeleton to use

Cancel

i,

Help

Specifies the default window skeleton to use. This is normally a modified version of
WINDOW.HTM skeleton from the supplied skeleton files.

Theme

Skeleton files can be categorized into common themes or styles so all window
representations in a theme have a common look and feel. Specify the default winodw

theme here.

Web Templates 39

Extra capabilities
Specifies extra capabilities of one skeleton versus another. The capability is specified
here.

Type of field
This is for fields which need special formatting such as dates, times, and monetary
pictures.

HTML

Individual Override for ?FileMenu

Dizplay Html |Evenls|F’rnperties|El_assesl ak

—HTHL before contral Cancel

Help

I

—HTHL after control

One of the most powerful features of the WBC Templates is the ability to embed HTML
code in the HTML pages which are output by the Web-enabled application. This feature
allows you to add any HTML code at points before or after any control on the resulting
Web page. This code does not affect the application when it is running as a Windows
executable.

Using Embedded HTML, you can write any HTML code supported by the browser. You
can insert your own custom JavaScript, Java applets, ActiveX controls, Shockwave files,
or other objects.

40

Internet Application Guide

Events

This tab allows you to override the page submission event for a control.

Individual Overnde for ?FileM enu

Dizplay | Himl Ewents |F'rn:||:|erties | El_assesl

[Befresh when changed Cancel

Help |

Refresh when changed

Check this box to cause the page to be submitted to the server when the value of the
control changes. The press of a command button automatically causes a page
submission. Most other controls that allow data entry do not automatically submit the
page to the browser.

This means the processing of events associated with the control is delayed until the page
is submitted to the browser. Your embedded code would not execute at the expected
time (e.g., code in the Event:Accepted embed point for a control would not execute until
the OK button submitted the page). This option allows you to override the page
submission event.

The ability to override the default page submission event when the application is
executed in a browser allows you to optimize the application for the Web environment
and ensure that all of your embedded code is executed at the time you expect it to.

Web Templates 41

Properties

A Property is a predefined or customized attribute that is defined in a skeleton file.
Through this dialog the skeleton’s property can be accessed and executed. Properties
serve as a way to translate information about a window or control from the executable to
the dynamically generated HTML page.

Individual Overmride for ?FileM enu

Displa_l,ll Heml | Ewvents Froperties |El_asses|

—verndden propertie Cancel

Help

d

Inzert Properties Delete | .—ﬁ.l '?'I

Press the Insert, Properties or Delete button to modify the properties that the
application will look for in the skeleton files.

Popeties &

Marne of praperty: | | s I

Tupe of property: |Stiing =l Cancel |
Walue: I

Name of Property
Enter the name of the TSSCRIPT property defined in the skeleton file.

Type of Property
Select the data type from the dropdown list. Select from BOOL, Integer, String, or
Reference.

Value
Enter a literal value or a valid clarion language expression.

42

Internet Application Guide

Classes

The Classes Tab lets you specify which classes (objects) the templates use to
accomplish various tasks, and the source modules that contain the class definitions. This
approach gives you the capability to use as much of the WBC Library as you want and as
much of your own classes as you want.

Individual Overnde for ?FileM enu

Dizplay | Hirml | Eventsl Properties Classes |

—LClazz Definition Cancel

Object Mame: W

W Use Default ABC: WhControlHimProperties

¥ Use pplication Buider Class? ﬁl
Base Class: Jirray |
Include File: |
[T Derive?
Hew Clazs Methods

Hew Clazs Broperties

Befresh Application Builder Clazs Information

Application Buillder Clazs Yiewer

To change the class for an item or override the class, highlight it in the list, then press the
Properties button.

Web Templates 43

MDI Tab

This section determines the manner in which Application Menus and Toolbars are
handled.

emet Options————————————__F|

WindnwlBeportlantmk MDI |F'ro|:uerties|t Al
Cancel |

—?Ep_ljc:atinn Menu

] g
Include On Child Windows:lND tenu lbems | Help |
I™ Ignare Frame Code —
chionz for 7E it

Broperties I

—&pplication Toolbar
I'E O+wermide global zettings
Include On Child Window&:an Toolbar ltems j
I™ Ignore Frame Code
ctionz for YECEButton ﬂ
ctions for YBFButton
ctions for YEB utton
ctions for ?Toolbar:B ottom

ctions for ?Toolbar:Change
ctionz for T oolbarDelste =l

Broperties I

Tip
For control over specific Menu or Toolbar items, set the MDI overrides in the Frame

Procedure’s Internet Options.

Merge Frame Menu
Check this box to Merge the Frame’s Menu when running this procedure.

Merge Frame Toolbar
Check this box to Merge the Frame’s Toolbar when running this procedure.

For a Frame Procedure, you have additional options. See Frame Procedure MDI Options.

44

Internet Application Guide

Properties Tab

A Property is a predefined or customized attribute that is defined in a skeleton file.
Through this dialog the skeleton’s property can be accessed and executed. Properties
serve as a way to translate information about a window or control from the executable to
the dynamically generated HTML page.

Individual Overmride for ?FileM enu

Displa_l,ll Html | Eventz Froperties |El_asses|

—Overndden propertie Cancel

Help

d

Inzert Properties Delete | é.l '?'I

Press the Insert, Properties or Delete button to modify the properties that the
application will look for in the skeleton files.

Popeties &

Marne of praperty: | | s I

Tupe of property: |Stiing =l Cancel |
Walue: I

Name of Property
Enter the name of the TSSCRIPT property defined in the skeleton file.

Type of Property
Select the data type from the dropdown list. Select from BOOL, Integer, String, or
Reference.

Value
Enter a literal value or a valid clarion language expression.

Web Templates 45

Advanced Tab

T |

BepnrtlEnntralsIMDl |F'rn:-|:|erties -‘f‘-d\“aﬂﬂﬁd{ el

—Security Cancel
[Transfer over a secure connection

[Festict access bo this procedure |

Owerride the pazsword walidation - or uze the fallowing s

Fazzword: | J

[T Caze sensitive

—Window refrezh
[T Show progress window

Time between refrest |2

Action on tmer: |Partial page refresh |l

[T Enable window refresh on timer

Time between refresh: |'IEI
Action ar timer: | |

Security

Restrict Access to this procedure
Check this box to password protect the procedure and enable the two fields below.

Password
Specify a password or select a variable from the file schematic by pressing the ellipsis
(...) button. A static password provides simple protection.

Case Sensitive
Check this box to enforce case sensitive validation of the password. If the box is not
checked, case is ignored.

Window refresh

Show progress window

This controls the window associated with a Report or Process procedure. It is not
available for other procedure types. Check this box to display the window associated with
the Report Procedure when running over the Web. If not checked, the window is ignored.
If the window in a Report Procedure contains a Pause Button control template, the box is
checked and cannot be changed. In a Process procedure, the box is checked and cannot
be changed. This makes sure the window displays.

46

Internet Application Guide

Time between refresh
Specify the number of seconds between each refresh.

Action on Timer
Specify the action to perform when the timer event is reached. The choices are:

Partial Page refresh
Redisplays Java controls and HTML entry controls to reflect current data.

Submit page
Sends data to server application and redraws page as instructed by the server
application

Complete Page refresh
Redraws the entire page.

Enable Refresh on timer

Check this box to refresh the entire page or only the page data based on a timer. A
TIMER attribute on a WINDOW is independant of this setting. This setting is used on the
Web and the TIMER attribute is used when the application runs under Windows.

Tip
This feature should be used sparingly to ensure minimal network traffic.

Time between refresh
Specify the number of seconds between each refresh.

Web Templates 47

Action on Timer
Specify the action to perform when the timer event is reached. The choices are:

Partial Page refresh
Redisplays Java controls and HTML entry controls to reflect current data.

Submit page
Sends data to server application and redraws page as instructed by the server
application

Complete Page refresh
Redraws the entire page.

Classes Tab

The Classes Tab lets you specify which classes (objects) the templates use to
accomplish various tasks, and the source modules that contain the class definitions. This
approach gives you the capability to use as much of the WBC Library as you want and as
much of your own classes as you want.

Internet Options. .

Eu:untru:ulslMDI IPerertiesl.ﬂ.dvanced E|EISSES| A&

Cancel ;l
Help |

Wieh Window kanager | Wb Window I
GEE Web win Manager| | GEE webwindow |

feb window F'ru:upertiesl YWeb Frame b anager

To change the class for an item or override the class, highlight it in the list, then press the
Properties button.

48 Internet Application Guide

Frame Procedure MDI Options

Application Menu

Internet Options...

‘_v\u"indoleleportlgontmls DI |F‘r0pertiest Al
Cancel |

_ FE -
Include On Child Wlndows:lNo Menu ltems VI
Help |
[T lgnore Frame Code
chions for YExit
Braperties |

—Application Toolbar
Owerride global settings

Include On Child Windows:lNo Toolbar ltems VI

™ lgnore Frame Code

clions for YBCEutton ﬂ
chions for YEPButton

chions for YEButton

ctions for ?Toolbar:B ottarn

ctions for 7T aolbar:Change

clionz for YT oolbarDelete =l

Properties |

Override Global settings
Check this box to override the Menu MDI settings in the global Web Application
Extension template. Checking this box enables the other prompts.

Include on Child Windows
Select the option from the drop-down list. The choices are:

Global Setting
Menu choices appear on child windows as specified in the Global options.

All Menu ltems
All menu choices appear on child windows.

No Menu Items
No menu choices appear on child windows.

Selected Menu Items
Allows you to select individual menu options from the list below.

Ignore frame code
Check this box to ignore any embedded code in the Application Frame’s ACCEPT loop
for menu items.

Web Templates 49

Application Toolbar

This section determines the manner in which Application Toolbar controls are handled.
This allows you to specify which global Toolbar controls are displayed on “child” windows.

Override Global settings
Check this box to override the Toolbar MDI settings in the global Web Application
Extension template. Checking this box enables the other prompts.

Include on Child Windows
Select the option from the drop-down list. The choices are:

Global Setting
Toolbar controls appear on child windows as specified in the Global options.

All Toolbar Items
All Toolbar items appear on child windows.

Standard Toolbar Only
Only the Standard Toolbar items appear on child windows.

No Toolbar Items
No Toolbar items appear on child windows.

Selected Toolbar Items
Allows you to select individual Toolbar items from the list below.

Ignore frame code
Check this box to ignore any embedded code in the Application Frame’s ACCEPT loop
for toolbar items.

50 Internet Application Guide

Code Templates

Dynamic HTML Code Template
This code template allows you to insert dynamic HTML code in any of the Internet embed
points. This template is only available for Embed points that can write to the delivered
HTML page at runtime.

You can specify any valid Clarion expression in the entry box. Any variables used in the
expression will use the current value at the time the HTML code is written.

When creating your expression to write HTML code, you must handle special characters,
such as <, by using two characters in succession.

This template uses the Target.WriteLn method to write the value of the expression to the
delivered HTML page.

See also: Embedding HTML

Static HTML Code Template
This code template allows you to insert static HTML code in any of the Internet embed
points. This template is only available for Embed points that can write to the delivered
HTML page at runtime.

You can specify any valid HTML code in the entry box.

This template uses the Target.WriteLn method to write the HTML code to the delivered
HTML page.

If you use the Static HTML Code Template, special characters are handled automatically.

Web Templates 1

GetCookie Code Template

This template allows you to retrieve a cookie from the client's machine. The following
template prompts are provided:

Cookie Name

Provide a name for the cookie. This is the name used in the SetCookie Code template to
write the cookie. If the cookie does not exist, a null value is assigned to the Variable to
Set.

Variable to Set
Select a variable from the file schematic by pressing the ellipsis (...) button. The value of
the cookie is assigned to the variable.

See also: SetCookie Code Template, Cookies (Persistent Client Data)

SetCookie Code Template

This template allows you to set a cookie on the client's machine for later retrieval. The
following template prompts are provided:

Cookie Name
Provide a name for the cookie. This is the name to use in the GetCookie Code template
to retrieve the cookie. If a cookie of the same name exists, it is overwritten.

New Value
Specify a value or select a variable from the file schematic by pressing the ellipsis (...)
button. This value is assigned to the cookie.

See also: GetCookie Code Template, Cookies (Persistent Client Data)

52 Internet Application Guide

Cookies (Persistent Client Data)

Cookies are a method for Web servers to both store and retrieve information on the client
side of the connection. This allows a server to store data on the client's machine and
retrieve it later.

A server can send a piece of data to the client (browser) which the client stores locally.
This is known as a cookie (the name has no known origin). Cookies contain a range of
URLs for which it is valid.

Later, when the client returns to a URL within that range, the server can query the cookie
and use that data. A server cannot retrieve information from other servers (i.e., a server
cannot query a cookie that is out of its domain range).

This mechanism is similar to the INI file storage and retrieval paradigm in Windows
(GETINI and PUTINI) and provides a method for identifying user preferences, and other
data.

For example, an application that requires a user to provide their name before entering
can use a cookie to avoid the Login process after the first visit.

Cookies are machine specific so a client who accesses a site from more than one
machine will need to provide the cookie information once for each machine so a cookie is
stored on the machine. In addition, cookies are browser specific, so a client who uses
more than one browser, will need to set and get cookies for each browser.

Your Web-enabled applications can use cookies to store user preferences such as the
default city and state for new records. These settings can be retrieved the next time the
user runs the application over the Web.

See also: GetCookie Code Template, SetCookie Code Template

Web Templates 53

AddServerProperty Code Template

This template allows you to set the value of the specified outgoing http item in the HTTP
header. The following prompts are provided:

Property Name
Provide the property name to set.

Property Value
Select a variable from the file schematic by pressing the ellipsis (...) button. The value of
the variable is assigned to the property.

See Also : GetServerProperty Code Template

GetServerProperty Code Template

This template allows you to get the value of the specified http item in the HTTP header.
The following prompts are provided.

Property Name

Provide a name for the HTTP property. If the HTTP field does not exist, a null value is
assigned to the Variable to Set.

Variable to Set

Select a variable from the file schematic by pressing the ellipsis (...) button. The value of
the property is assigned to the variable.

See Also : SetServerProperty Code Template

54 Internet Application Guide

RedirectToPage Code Template

This template redirects the browser to the designated URL. At the present time, the
running program is left running. The program must be terminated or left to time out.

The following prompt is provided:
Page to redirect to

Specifies the URL of the page the browser it redirected to. An absolute or relative URL
may be specified.

WebGridExtension

All BrowseBoxes that use the ABC’s BrowseGrid control template must use this template
for Web applications.

F-C30 Browse on Praduct

1 Toolbar for browse on Product

Cauze Browse to act as gnid

‘wieb Estenzion to Browse Grid for ?andCel

:ﬁ |lpdate a Record from Browsze Box on Product

This template requires the use of the ABC BrowseGrid extension.

1. RIGHT-CLICK on the procedure and choose Extensions from the popup menu.
2. Within the list of existing extensions, highlight Cause Browse to act as grid.
3. Press the INSERT button and select the WebGridExtension extension.

This template has no prompts.

For further information about using the browse grid interface, see the BrowseGrid
template documentation which can be found in the Template By Topic PDF.

Web Templates 55

WebHitManager

The WebHitManager extension template provides the ability to record the number of
accesses (hits) to an application or certain procedures within the application. Hit counts
can be tied to a particular window activity or control event. This extension template is
added to the global extension of the application file and allows the Hit Managers global
options to be set.

This extension template requires the WebApplicationExtension.

Populating the Template

1.

2.

£ Extension and Control Templates

Press the Global button from the IDE.
Press the Extensions button.
Highlight the WebApplicationExtension template.

Press the INSERT button and select the WebHitManager extension.

-3 ‘Web Application Extenzion

Bl \/cb Hit Manager Extension Hit Manager Options |G|Dba|_DiBClS I Classes I
Hitz D ata File: |Hits.Log
File Update Thieshold: |10 =

[Show on Glabal Properties

The WebHitManager template provides the following prompts:

Hit Manager Options

Hits Data File
Specify the log file that is used to store the WebHit counts. If no path is specified,
the file is created in the Windows directory.

File Update Threshold

Specifies the number of hits to occur before the counts are written to the Hits
Data File. The counts are written when the program is terminated, regardless of
the threshold specified.

56 Internet Application Guide

Global Objects

The Global Objects tab lets you specify the default object names for the objects used by
the ABC Templates. You can also specify the default classes to be used for the global
objects.

Classes

The classes tab lets you control the class (and object) the template uses. You may
accept the default Application Builder Class and it's object (recommended) or you may
specify your own or a third party class. Deriving your own class can give you very fine
control over the procedure when the standard Application Builder Class is not precisely
what you need.

See Template Overview — Classes Tab Options — Local for complete information on
these options.

WebHitProc

The WebHitProc extension template provides the ability to record the number of
accesses (hits) to an application or certain procedures within the application. Hit counts
can be tied to a particular window activity or control event. This extension template is
added to any procedure that will record the hits tied to the procedure at the procedure
entry level, window event level or control event level. This extension requires the
application to have the global WebHitManager extension.

This extension template requires the WebHitManger global extension.

Populating the Template

1. RIGHT-CLICK on the procedure and choose Extensions from the popup menu.

2. Press the INSERT button and select the WebHitProc extension.

Web Templates 57

Template Prompts

Prompts for WebHitProc

Procedure Hit Count Options I|:|.333.33 | Ok

Procedure Instance |0: Browseltems Cancel |

Frocedure Entry T ag: |Entered

F:u:untru:ul Tag ‘ Help |

The WebHitProc template provides the following prompts:

Procedure Hit Count Options

Procedure Instance Id
Specifies the id of the hit instance recorded in the log file. This id is used to read
and write the hit count to the log file. By default this is the name of the procedure.

Procedure Entry Tag
Specifies text to describe the procedure action that is counted. This text is written
to the log file. By default this is set to Entered.

Control Tags
Provides a listbox in order to define one or more control specific hit counts.

Link Tag
Specifies text to describe the window or control event that is counted. This text is written
to the log file following the Procedure Instance Id.

Trigger Control

Select a control from the drop down listbox. This will trigger the hit count to be
incremented when the control is handled and the Trigger Event occurs. To trigger a hit
count on a window event, leave the Trigger Control blank.

Trigger Event

Select an event from the drop down listbox. This will trigger the hit count to be
incremented when the event occurs. If a control is specified as the Trigger Control, the
event is based on the control. If no control is specified, the event is based on the window.

58 Internet Application Guide

Classes

The classes tab lets you control the class (and object) the template uses. You may
accept the default Application Builder Class and it's object (recommended) or you may
specify your own or a third party class. Deriving your own class can give you very fine
control over the procedure when the standard Application Builder Class is not precisely
what you need.

See Template Overview — Classes Tab Options — Local for complete information on
these options.

WebShowHits

The WebShowHits extension provides the ability to display a hit count. This extension
requires the application to have the WebHitProc extension.

This extension template requires the WebHitProc extension.

Populating the Template

1. RIGHT-CLICK on the procedure and choose Extensions from the popup menu.
2. Press the INSERT button and select the WebShowHits extension.

Template Prompts

The WebShowHits template provides the following prompts:

Count Tag

Specifies the tag defined in the WebHitsProc extension for a Procedure Entry Tag or
Control Link Tag. This tag is used to retrieve and display an up to date count. This tag is
case sensitive.

Assignment Type
Select Text Property or Variable from the drop down listbox. This assigns the specified
control or variable the value of the count for display.

Control to Receive Link
Specify the window control that will display the hit count. This is enabled only when Text
Property is selected as the Assignment Type.

Variable to Receive Link
Specify the variable that will display the hit count. This is enabled only when Variable is
selected as the Assignment Type.

Web Templates 59

WebGuard Application Extension

The WebGuard Application extension template provides an easy way to limit access to
applications at the application and/or procedure level. The template provides a default
logon window (this window may be overridden) used for logging in to an application and
provides the ability to add a new user to the application.

WebGuard supports the ability to define specific capabilities (rights) to each user. These
capabilities are used by the WebGuardProc procedure extension template to validate the
users rights to the requested information. WebGuard has the ability to work in conjunction
with the GlobalDocumentHandling extension (Internet Toolkit). By combining these
templates the ability to email a user about invalid logins to their account is enabled.

The minimum requirement of keys and columns needed to use the WebGuard extension
is defined below. The column names can be anything; they do not have to match the
definition. The purpose of the keys and columns are the important issue.

Required:

CUSTOMER FILE

NameKey KEY, Unique, Contains Name column

Name FIELD, must be a STRING, CSTRING, or PSTRING

Password FIELD, must be a STRING, CSTRING, or PSTRING

Capability FIELD, must be a STRING, CSTRING, or PSTRING

Number FIELD

Optional: The following fields are required only when enabling their corresponding
options.

CountFailure FIELD

DaysTolLock FIELD

MaxLogonAttempts FIELD

AccountLocking FIELD

Lockeduntil FIELD

This extension template requires the global WebBuilder template.

Populating the Template

1. Press the Global icon button from the IDE.
2. Press the Extensions button.
3. Highlight the WebApplicationExtension extension template.

4, Press the INSERT button and select the WebGuard extension.

60 Internet Application Guide

£ Extension and Control Templates

—-(13 ‘web Application Extension ™ Show on Global Properties
ST v/ cb Application Guard Extension Guard Data File |Euard Options | Global Djects{ -¢[»|

=B Web Hit Manager Extension Uszer Information Data File: |

File Access Keay: |
Mame Field:

|
Paszsword Field: |
Capability Field: |
Customner Mumber Field: |
|

|

|

Count Failure Field:

Account Locking Field:
Locked Until Field:

BN Y R o o Y

The WebGuard template provides the following prompts:

Guard Data File

User Information Data File

Select the file to be used as the customer (Customer) file. Use the ellipsis (...) to
select the file from the file schematic or type in a file that exists in the file
schematic.

File Access Key

Select the key that is made up of the customer name field. This key is used to
retrieve a specific customer record from the Customer file. The key should be a
unigue key. Use the ellipsis (...) to select the key from the customer file or type in
a key that exists in the file.

Name Field

Select the field to be used as the customer name field. This field specifies the
customer name and must be defined as a STRING, CSTRING, or PSTRING. The
customer name field must be the primary field in the File Access Key. Use the
ellipsis (...) to select the field from the customer file or type in a field that exists in
the file.

Password Field

Select the field to be used as the customer password field. This field will contain

the customer’s defined password and must be defined as a STRING, CSTRING,

or PSTRING. Use the ellipsis (...) to select the field from the customer file or type
in a field that exists in the file.

Web Templates 61

Capability Field

Select the field to be used to validate customer capabilities. This field must be
defined as a STRING, CSTRING, or PSTRING. Use the ellipsis (...) to select the
field from the customer file or type in a field that exists in the file. Capabilities
define the specific abilities available to a customer. For example, there may be
several types of customers that have different rights in the system. There may be
a PRIORITY customer and a STANDARD customer. If a PRIORITY customer
logs into the system they will potentially see different menu choices than the
STANDARD customer.

Customer Number Field

Select the field to be used as the customer number field. This field will contain
the customer id used to identify a customer. Use the ellipsis (...) to select the
field from the customer file or type in a field that exists in the file. This field should
exist as part of a autoincrementing key so new users will have incremented
customer numbers.

Count Failure Field

Select the field to be used as a count field. This field is incremented when an
invalid logon occurs. When the invalid count exceeds the Maximum Logon
Attempts, the customer account can be locked either for the specified number of
days or until a specified date. Use the ellipsis (...) to select the field from the
customer file or type in a field that exists in the file.

Account Locking Field

Select the field to be used as the lock status field. This field is set when the
Maximum Logon Attempts is reached. Use the ellipsis (...) to select the field from
the customer file or type in a field that exists in the file.

Locked Until Field

Select the field to be used to specify the date the customer account will be
unlocked. This field is set when the Maximum Logon Attempts is reached. It is
set to the current date plus the number specified in the Days To Lock template
prompt. Use the ellipsis (...) to select the field from the customer file or type in a
field that exists in the file.

62

Internet Application Guide

Guard Options

4 Extension and Control Templates H=] E3

—[] ‘Web Application Estension [Show on Glabal Properties
R /b Application Guard Extersion Guard Data File Guard Options |I3I|:|I:uaI_EIiects|B Alw

""" 3 ‘web Hit Manager Extension W Enable Application S ecurib
¥ web Enable
[Force Logon when Pragram Starts

Davs To Lock: |D

I awimumm Logon Attempts: |U il

[T Email Password

Default Capabilities: |
|

Default Admin Logaorn:

Default ddmin Paszward: |

Default Admin Capabiities: |
v Ignome Capabilities Cage
¥ Pasition File to Customer

Allow Mew User Button; — [Yes =l
Default Guard Failure Action

“When Guard Fails: |Shuw teszage :l
Frocedure Mame: | Iﬂ
[Dveride Logon Procedure

Procedure Mame: | =1

i o

Enable Application Security
Check this box to enable the WebGuard application extension for an application. By
default this box is checked. When this box is unchecked, all WebGuard prompts are

disabled.

Web Enable
Check this box to enable WebGuard login windows to work in a web application. By

default this box is checked.

Force Logon When Program Starts
Check this box to have a logon window appear at the start of the application. By default
this box is unchecked.

Days To Lock
Specify the number of days a customer account will be locked in the case when the

Maximum Logon Attempts occur.

Web Templates 63

Maximum Logon Attempts

Specify the maximum number of invalid logon attempts. This is available when a Count
Failure field is specified. Days To Lock and Account Locking Field must be entered in
order for the Maximum Logon Attempts to be validated.

Email Password

Check the box to have an email sent to the customer when the maximum number of
invalid logon attempts occur. See the Global Document Handling Internet ToolKit
extension to setup email specifications.

Default Capabilities

Specifies a string, variable, or runtime expression using EVALUATE to use as the default
capability settings for all customers logging in to the system. To specify a variable here,
precede the entry with an exclamation point (!). To specify a runtime expression, precede
the entry with an equal sign (=).

Default Admin Logon

Specifies a string, variable, or runtime expression using EVALUATE to use as the default
Administrator logon name. To specify a variable here, precede the entry with an
exclamation point (!). To specify a runtime expression, precede the entry with an equal

sign (=).

Default Admin Password

Specifies a string, variable, or runtime expression using EVALUATE to use as the default
Administrator password. To specify a variable here, precede the entry with an
exclamation point (!). To specify a runtime expression, precede the entry with an equal

sign (=).

Default Admin Capabilities

Specifies a string, variable, or runtime expression using EVALUATE to use as the default
Administrator capabilites. To specify a variable here, precede the entry with an
exclamation point (!). To specify a runtime expression, precede the entry with an equal

sign (=).

Ignore Capabilities Case
Check this box to force the capabilities verification to be case insensitive. The default
value for this prompt is case insensitive.

Position File to Customer
This is not implemented at this time.

Allow New User Button
Select Yes, No, or Use External Procedure to have the New User button shown on the
window or not.

64

Internet Application Guide

Default Guard Failure Actions

Define the failure actions to take when a customer does not have the required capabilities
to enter a specific area. These default options can be overridden using the WebGuard
Procedure extenson.

When WebGuard Fails

Choose Show Message or Run a Procedure as the default failure action. Show message
displays a message to the user to inform them about their capabilites. The message is
defined in WebGuard.trn.

Procedure Name

Choose an existing procedure from the drop down listbox or type in a new procedure
name. This procedure is executed when a user tries to enter a procedure with invalid
capabilities.

Override Logon Procedure
Check this box to override the default logon window in order to provide a customized one.

Procedure Name

Choose an existing procedure from the drop down listbox or type in a new procedure
name. This procedure is used to replace the default logon window and code. This
procedure must return a return value of a BYTE. The return field returns the error
severity. The severity levels can be found in ABERROR.INC.

Global Objects

The Global Objects tab lets you specify the default object names for the objects used by
the ABC Templates. You can also specify the default classes to be used for the global
objects.

Classes

The Classes tab lets you control the classes (and objects) the procedure uses. You may
accept the default Application Builder Class and its object (recommended), or you may
specify your own or a third party class. Deriving your own class can give you very fine
control over the procedure when the standard Application Builder Class is not precisely
what you need. See Template Overview—Classes Tab Options—Local for complete
information on these options.

Web Templates 65

WebGuardProc Procedure Extenstion

The WebGuardProc procedure extension is available when the WebGuard application
extension is added globally to the application. This procedure extension gives the ability
to limit access to specific procedure based on defined user capabilities.

This extension template requires the global WebGuard extension.

Populating the Template

1. RIGHT-CLICK on the procedure and choose Extensions from the popup menu.
2. Press the INSERT button and select the WebGuardProc extension.

Template Prompts

Prompts for WebGuardProc

[™ Guad Frocedure Enby
FRequired Entry Capability: |
: - Cancel
“w'hen Guard Fails: J0efault Action]
Procedure Mame: | |L|

dd

Help

The WebGuardProc extension provides the following prompts:

Guard Procedure Entry
Check this box to validate the users capabilities (rights) to access the procedure.

Required Entry Capability
Specify the required capability to gain access to the procedure.

When Guard Fails

Choose Default Action, Show Message or Run a Procedure as the failure action. The
failure actions define the action to take when a customer does not have the required
capabilities to enter a specific area. Show message displays a message to the user to
inform them about their capabilites. The message is defined in WebGuard.trn.

Procedure Name

Choose an existing procedure from the drop down listbox or type in a new procedure
name. This procedure is executed when a user tries to enter a procedure with invalid
capabilities.

66 Internet Application Guide

Control To Guard
Specific controls can be guarded by this extension. Choose the control to guard from the
drop down listbox.

Required Control Capability
Specify the required capability to gain access to the control.

Guard Type
A control can either be hidden or trigger a failure action if the capabilities requirement is
not met. Select Hide or Trigger from the drop down listbox.

When Guard Fails

Choose Default Action, Show Message or Run a Procedure as the triggered failure
action. The failure actions define the action to take when a customer does not have the
required capabilities for the specified control. Show message displays a message to the
user to inform them about their capabilites. The message is defined in WebGuard.trn.

Procedure Name

Choose an existing procedure from the drop down listbox or type in a new procedure
name. This procedure is executed when a user tries access a control with invalid
capabilities.

WebVisitor

& Extension and Control Templates _ O] x|

— D Web fpplication Extension [Show on Global Properties
= D \-\-"eb Appllcatlon Guard Extenzion| Misitors |

[Enable “isitors

Derived Guard Class: IVisitorEIass vI
—Wisitors File

Yisitorg File: I—J
Wisitor [dx Key: I—J
Wisitor Idy Field: |
Wigitor Customer [0 Field: I—J
Wisitor Diate Field: 2
Date Field Iriial Yalue: [TODEMD |

—LCart File

LCart File: I J

Cart Customer ey J

Cart Customer [D Field: J
—Irvoice File

Irredice Fils: J

Invoice Customer Kew: J

Irvoice Cugtorner [0 Field: I J

Web Templates 67

The WebVisitor extension template is a global extension that allows an application to
have temporary users (visitors). This concept is most often used in a shopping cart
application where users can view products and use the shopping cart prior to signing in
and processing an order. The template creates a temporary user record in the visitor file
as well as the customer file. This template requires the WebGuard global extension.

Enable Visitors
Check this box to enable Visitors for the application.

Derived Guard Class

Select the class the template will use from the drop down listbox. You may accept the
default VisitorClass (reccomended) or you may specify your own or a third party class.
Deriving your own class can give you very fine control over the functionality when the

standard Application Builder Class is not precisely what you need.

Visitors File
Select the file to be used as the visitor (Visitor) file. Use the ellipsis (...) to select the file
from the file schematic or type in a file that exists in the file schematic.

Visitor Idx Key

Select the key to be uses as the Visitor ldx key. This key should be an auto-incrementing
key that consists of the visitor idx field. Use the ellipsis (...) to select the field from the
visitor file or type in a field that exists in the file.

Visitor ldx Field
Select the field to be used as the visitor idx field. Use the ellipsis (...) to select the field
from the visitor file or type in a field that exists in the file.

Visitor Customer Id Field

Select the field to be used as the customer id field. This is used to relate the visitor record
to the customer file. This is a one-to-one relationship. Use the ellipsis (...) to select the
field from the visitor file or type in a field that exists in the file.

Visitor Date Field

Select the field to be used as the visitor date field. This is used to keep track of the date
the visitor signed on to the system and is also used by the DeleteVisitorProcess to
remove obsolete visitors. Use the ellipsis (...) to select the field from the visitor file or type
in a field that exists in the file.

Date Field Initial Value

Specify the initial date value to be used when a record is added to the visitor file. This
may be a value, function or variable. The default value is TODAY(). The initial value may
also be set in the initial value of the date field in the dictionary.

68

Internet Application Guide

Cart File
Select the file to be used as the shopping cart (Cart) file. Use the ellipsis (...) to select the
file from the file schematic or type in a file that exists in the file schematic.

Cart Customer Key

Select the key to be uses as the customer key. This key should consist of the customer id
field. It is used to relate the cart file to the customer file. Use the ellipsis (...) to select the
field from the cart file or type in a field that exists in the file.

Cart Customer Id Field

Select the field to be used as the customer id field. This field identifies the id of the
customer who created the shopping cart. It is used to relate the Cart file to the Customer
file. The relationship is a one-to-many relation. Use the ellipsis (...) to select the field from
the shopping cart file or type in a field that exists in the file.

Invoice File
Select the file to be used as the invoice (Invoice) file. Use the ellipsis (...) to select the file
from the file schematic or type in a file that exists in the file schematic.

Invoice Customer Key

Select the key to be uses as the customer key. This key should consist of the customer id
field. It is used to relate the invoice file to the customer file. Use the ellipsis (...) to select
the field from the invoice file or type in a field that exists in the file.

Invoice Customer Id Field

Select the field to be used as the customer id field. This field is used to relate the Invoice
to a Customer. Use the ellipsis (...) to select the field from the invoice file or type in a field
that exists in the file.

Web Templates 69

DeleteVisitorProcess

The DeleteVisitorProcess extension template will remove old non-existant visitors from
the visitor table and all related tables. This extension may only be added to a PROCESS
procedure. The following files must be in the file schematic of the procedure in order for
all related tables to be cleaned of the obsolete visitor records.

£ Table Schematic Definition

Files :
--[Z] Table Schematiz
—D File(s] to Process
=<2 Customer
L7 Cart
>E CartLine
217 Inwoice
E Irweniceline
-2 OTHER TABLES
-] GLOBAL DATA
-[Z MODULE DATA shappOll.chy
-] LOCAL DATA bain

K |
Inzert | Edit I Delete |
aK I [l | Cancel | Help |

The PROCESS procedure should have the Actions for Process set to DELETE record.
Check the Use RI constraints box. The record filter should be set to filter out visitor
records older than x number of days. To delete all visitor records older than 7 days set
the record filter to VIS:Dte < TODAY()-7. VIS:Dte is the Visitor Date Field defined above.
To delay showing the process window, use the ExtendedProgressWindow extension.

=11 Cancel

Cusztomer [0 Figld: I J
=iz Rz Fil
Rezervation Mumber Figld: I J
Praduct |D Field: | o
Luantity Figld: I J

Help

i,

70

Internet Application Guide

Use Reservation System
Check this box use the reservation system.

Customer ID Field
Select the field to be used as the customer id field. Use the ellipsis (...) to select the field
from the invoice file or type in a field that exists in the file.

Reservation Number Field
Select the field to be used as the reservation number field. Use the ellipsis (...) to select
the field from the invoice line file or type in a field that exists in the file.

Product ID Field
Select the field to be used as the invoice line product id field. Use the ellipsis (...) to
select the field from the product line file or type in a field that exists in the file.

Quantity Field
Select the field to be used as the invoice line quantity field. Use the ellipsis (...) to select
the field from the invoice line file or type in a field that exists in the file.

TSSCRIPT 71

4 - TSSCRIPT
Introduction

The WebBuilder extensions use a new method of constructing the HTML representation
of an application at runtime. You can still embed HTML in your Clarion App as before, but
now there are extended capabilities that can be utilized after the app is compiled.

This also provides the ability to change an application’s look and feel after the application
is made without having to recompile the application. This allows you to easily make your
Web application look like your Web site. When you change your Web site’s appearance,
you can easily change the application’s look to match.

The result is an application that controls business logic and data access, and HTML files
which control the presentation layer. A non-programmer (i.e., webmaster) can edit the
HTML skeletons without the Clarion developer.

Skeletons

Clarion’s Web Builder templates use a collection of HTML files called Skeletons. These
files contain all the information needed to control construction of the delivered HTML
page. These files are stored in the directory named in the Global Extension of your web-
enabled app. The current default is Skeleton.

£ Extenszion and Control Templates _ (3] x|

[Show on Global Properties

‘Web Application Extenzsion

Window | MDI Advanced |Global Objects { Al

—Application
Enable dual mode application

Page to returm to on exit: |

Time out [zeconds]: |EDEI jl
Sub directory for pages: |
Sub directory for skeletons:laﬂm

™ Use Conkies Rather than INI File

The collection of files is first read by the web-enabled application when it executes and all
of the possible options are stored in an internal database.

When it is time for the app to construct a page, the database is queried and the
application uses a skeleton which best matches the control.and its properties. If you

72

Internet Application Guide

examine your Skeleton folder, you will notice files such as button.htm, prompt.htm,
string.htm, etc. While the filenames are irrelevant (unless you explicitly specify a
WebStyle file to use for a control), examination of the meta tags in the HTML files will
show you the properties of the skeleton.

There are four primary properties of a control skeleton which are used to determine the
best match at runtime: Control Type, Style, Capabilities, and Field Type.

The first is determined by the WINDOW definition:

Control Type

The type of control populated on the WINDOW (e.g., BUTTON, STRING, ENTRY, etc.).
EXAMPLE:

<meta name=""ts-control” content="button”>

The other three are determined by values you enter in the Individual Overrides for a
control which allows you to specify properties that the app will consider when finding the
best match at runtime.

The other three are determined by values you enter in the Individual Overrides for a
control which allows you to specify properties that the app will consider when finding the
best match at runtime.

Individual Override for ?CUS:Company

Dizplay |th'|l | Eventsl Froperties | El_assesl Ok,

—Eeneral Cancel |

™ Hide if launched from broveser
Skeleton Selection |

Skeleton to uze: Help

Theme:

|
|
Extra capabilities: |
Type af figld: |

Skeleton to Use

This “hard-wires” a specific HTML skeleton to the control. If you specify a filename here,
no other properties are considered.

Style

TSSCRIPT 73

This property allows you to categorize skeletons into a common theme or style. For
example, you can replicate all of the standard skeletons and add a “western” style to the
new skeletons (e.g., images of cactus, wood grain buttons, etc.).

Extra Capabilities

This property allows you to specify certain capabilities in your skeleton.
Examples:
In the current skeletons, a TAB can be represented in two ways:

with the selected TAB appearing on top and the rest hidden

or

with all TABs showing on a taller page.

This is controlled by specifying the showall property in the Capabilities prompt in the
Internet Connect template in the IDE (individual overrides for a control).

In TAB.ALL.HTM, you will find these two meta-tags:

<meta name=""ts-control” content=""tab”>
<meta name=""ts-capabilities” content="showall”’>

In TAB.ONE.HTM, you only find a meta-tag for the control Type:
<meta name=""ts-control” content="tab”>

Therefore, if you specify the showall capability property in the Capabilities prompt in the
WebBuilder template in Clarion, it signifies that TAB.ALL.HTM best matches and is the
one used.

You can use any words as capability keywords. A complete list of the ones included in
the standard skeletons will be published later (after more are utilized). In this release the
following are used:

list_.htm: <meta name=""ts-capabilities” content="drop”>
Supports droplists

query.htm: <meta name="ts-capabilities” content="query”>
Supports the query button control template

splash_htm: <meta name=""ts-capabilities” content="splash”>
Supports a splash window which closes after the time specified in the APP

tab_.all_htm: <meta name=""ts-capabilities” content="showall’>

74 Internet Application Guide

Supports all TABs showing on a taller page.

table_htm: <meta name="ts-capabilities”
content="multicolumn,pageloaded,default”’>

Multi-column Listbox support (as an HTML table).

Type of Field

This property has not yet been utilized by the current set of skeletons, but its intended
use is for fields which need special formatting such as dates, times, and monetary
pictures.

TSScript

The SoftVelocity scripting language extends the HTML skeleton technology by allowing
additional formatting and conditional options in a skeleton file. Although the scripting
language is fairly simple in design, it is flexible enough to support complex logic and
conditional generation of html from a Clarion application. A few examples are included at
the end of this chapter.

Basic Structure

<TSSCRIPT> </TSSCRIPT>

All script code is enclosed in a pair of tags. <TSSCRIPT> begins a block of code
and </TSSCRIPT> terminates a block. These can be nested.

Example:

<TSSCRIPT tag=a attr=href replace=NAME value=Contents>

<TSSCRIPT value=Contents>

</TSSCRIPT>

</TSSCRIPT>

TSSCRIPT

75

Patching

One purpose of these skeleton files is to allow data to replace certain elements so that it
can be delivered in a manner to display in a browser.

tag=<name>

tag=*

which tag to target; defaults to plain text
Example:

<TSSCRIPT tag=a attr=href replace=NAME value=Contents>

<TSSCRIPT value=Contents>

</TSSCRIPT>

</TSSCRIPT>

Specifies any tag

attr=<name>

Specifies the tag attribute to target. The attribute is inserted if does not exists.

replace=<string>

The search string to replace with the value attribute. The entire search string is
replaced.

Example:

<TSSCRIPT tag=a attr=href replace=NAME value=Contents>
Click Here
</TSSCRIPT>

patch=<wildcard>

This is the same as replace, but can contain an asterisk (*) as a wildcard. For
example, “think * should”. An asterisk can also match to start or end.

block=<tag>

This restricts substitutions to within a specified <tag>.

76

Internet Application Guide

value=expression
The computed value to replace with.
text=string

This is the literal text to replace. If omitted (i.e., no value) it removes an attribute
or tag.

type=text|value|html

Repeats

repeat=count
Duplicates the following code for the number of times specified (count).
name=<id>

Create a local variable <id> which is bound to the count.

Includes
include=<condition>

Includes the matched items if the condition is true.
omit=<condition>

Includes the matched items if the condition is false.
scope=<name>

Selects the control being addressed by the html.

TSSCRIPT 7

General
when=<condition>

Specifies to only replace if the expression is true.
phase=<phase,phase>

Specifies which phase(s) the tag should be processed in. If not specified, it is
processed as soon as the expressions can be evaluated.

comment=""...
Used to comment.

<TSINCLUDE Name="displayText.htm">

Inserts another skeleton file at the location.

META Tags

The term meta is derived from the Greek word which denotes a nature of a higher order.
Meta data typically consists of a number of pre-defined elements representing specific
properties of a resource, and each of these elements can have one or more values.

Meta tags were introduced into HTML to allow web authors to specify document
properties without displaying them in a browser. The most common use of meta tags is to
add keywords and a description to a static web page for search engines. Meta tags can
be used to store any document-wide data. For example, you can specify a document’s
author, creation date, and last modified date. Some HTML authoring tools automatically
add some of these meta data elements.

Clarion uses meta tags to supply properties to skeleton files. This data is later collected
at runtime to determine which skeleton to use for a specific control. Meta tags are
inserted between the <head> and </head> tags.

78 Internet Application Guide

The following meta tag names are used in the skeleton files:

<meta name="ts-control” content="controltype,controltype”>

This tag specifies the control type(s) which the skeleton supports. The possible control

types are:

box button check droplist
entry arid aroup image
Ttem list menu Option
panel menubar prompt radio
HRegion Sstring tab sheet
spin text toolbar Window
application |string

<meta name="ts-capabilities” content="capability,capability”>

This tag specifies the capabilities which the skeleton supports.

<meta name="ts-style” content="style">

This tag specifies the style(s) which the skeleton supports.

<meta name="ts-type” content="fieldtype,fieldtype”>

This tag specifies the field type(s) which the skeleton supports.

TSSCRIPT 79

WebStyle Examples

Email String

This skeleton formats data from a variable containing an email address so it is a “Mailto:”
hyperlink. To use this skeleton, you would specify the email capability property in the
Capabilities prompt in the Internet Connect template in the IDE (individual overrides for a
control).

<HTML>

<head>

<meta name=""ts-control” content="sstring”>
<meta name=""ts-capabilities” content="email”>
</head>

<BODY>

<I- email.string.htm — Start —>

<TSSCRIPT value="EmbedBeforeControl” type=html>
</TSSCRIPT>

<TSSCRIPT tag=a attr=href replace=NAME value=Contents>

<TSSCRIPT value=Contents>

</TSSCRIPT>

</TSSCRIPT>

<TSSCRIPT value="EmbedAfterControl” type=html>
</TSSCRIPT>

<I— email.string.htm — End —>

</BODY>

</HTML>

Hyperlink String with terse text displayed

This skeleton formats data from a variable containing a URLaddress so it displays as a
hyperlink. To use this skeleton, you would specify the hyperlink capability property in the
Capabilities prompt and the terse style property in the Style prompt in the Internet
Connect template in the IDE (individual overrides for a control).

<HTML>

<head>

<meta name=""ts-control” content="sstring”’>

<meta name="ts-capabilities” content="hyperlink’”>
<meta name=""ts-style” content="terse”>

</head>

<BODY>

<I— link.string.htm — Start —>

<TSSCRIPT value="EmbedBeforeControl” type=html>
</TSSCRIPT>

<TSSCRIPT tag=a attr=href replace=NAME value=Contents>
Web Site

80

Internet Application Guide

</TSSCRIPT>

<TSSCRIPT value="EmbedAfterControl” type=html>
</TSSCRIPT>

<I— link.string.htm — End —>.9

</BODY>

</HTML>

Hyperlink String with verbose text displayed

This skeleton formats data from a variable containing a URLaddress so it displays as a
hyperlink. To use this skeleton, you would specify the hyperlink capability property in the
Capabilities prompt and the verbose style property in the Style prompt in the Internet
Connect template in the IDE (individual overrides for a control).

<HTML>

<head>

<meta name=""ts-control” content="sstring”’>
<meta name=""ts-capabilities” content="hyperlink’”>
<meta name=""ts-style” content="verbose”>
</head>

<BODY>

<I- link.string2.htm — Start —>

<TSSCRIPT value="EmbedBeforeControl” type=html>
</TSSCRIPT>

<TSSCRIPT tag=a attr=href replace=NAME value=Contents>

<TSSCRIPT value=Contents>

</TSSCRIPT>

</TSSCRIPT>

<TSSCRIPT value="EmbedAfterControl” type=html>
</TSSCRIPT>

<I— link.string2_.htm — End —>

</BODY>

</HTML>

Skeleton Guide 81

5 - Skeleton Guide
Introduction

When using the Web Builder templates, special HTML files, called skeletons are used. As
the name implies, these files have very little information in them, in other words, they are
a “bare bones” template. Theare are used to merge with the Clarion application
representation to create an HTML page. Their purpose is to produce HTML code for a
single window control, window and application. The only exception is the Window.htm
which produces HTML code for the basic page.

These files contain a special scripting language known as TSSCRIPT. For those familiar
with scripting languages, it has similar characteristics with JavaScript and XML, although
it is not a complete version of either of these. You could also think of it as “templates” for
HTML code. The runtime routines read attributes of TSSCRIPT tags. HTML page
generation is done on the server when it generates the hard HTML file that is piped to the
client. The effect is favorable as it means lower bandwidth usage than Java and a
reliable way to predict how a page and its contents are rendered.

Skeletons can include other skeletons as the need arises. The benefit here is that you
could author your own skeletons and include them with the shipping skeletons.

Where are the Skeleton files?

As shipped, the skeleton files are located in the Distrib\Skeleton folder. Under this folder
are three style folders, Default, Fish and Wire. These are theme folders. For purposes of
this chapter, the Default theme folder is examined. These are the files you will find in this
folder:

Button._htm Check.htm Box.htm
Combo.htm Detail _htm Email.string.htm
Group.htm Entry.htm Grid.htm
Hotstring.htm Image.htm Item_htm
List_htm Menu.htm Menubar _htm
Panel .htm Query._htm Prompt._htm
Radio.htm Region.htm Sheet.all_htm
Sheet.one.htm Sheet.two.htm Spin_htm
Sstring.htm String.htm Tab.all_htm
Tab.one.htm Table_htm Text._htm

Toolbar .htm Window.htm Splash._htm

82

Internet Application Guide

Window.HTM

This is the main skeleton. This controls the default look or appearance for all windows in
your application. This skeleton controls the defaults (which can be overridden later).

Tip

It is recommended that while you are studying the skeletons with this reference, you open
them with any text editor, preferably one that understands HTML commands such as
TextPad.

This discussion (and the ones that follow) will work from the top of the skeleton files
down.

<TSSCRIPT value="EmbedMetaTags" type=html></TSSCRIPT>

The <TSSCRIPT> is the beginning tag for using any TSSCRIPT language. It requires
the end </TSSCRIPT> tag. Everything in between these two tags are attributes.
<TSSCRIPT> begins a section of code that is replaced with HTML at runtime.

The above is an embed point for HTML embedded code in the skeletons.

<meta name="ts-control' content="window,application'>

This is standard HTML declaring HTTP meta name/value pairs that are associated with
the HTML document. This is declaring a new meta name called ts-control and it is used in
a window or application.

<TSSCRIPT include="TimeOut I= 0>
<TSSCRIPT tag=meta attr=content replace="DELAY" value="TimeOut'>
<TSSCRIPT tag=meta attr=content replace="PROGRAM.TARGET"
value="ProgramReference"'>
<meta HTTP-EQUIV="REFRESH" CONTENT="DELAY ; URL=PROGRAM.TARGET">
</TSSCRIPT>
</TSSCRIPT>
</TSSCRIPT>

This shows several things. First, you can embed HTML code within TSSCRIPT tags.

The include attribute on the first line means the code following is used only if the timeout
value is not zero. This is very similar to JavaScript. The “I=" means “not equal to”.

The next line replaces the DELAY attribute with the value in TimeOut. This is set in the
global web template for the application. The default is 600 seconds or 10 minutes.

Skeleton Guide 83

The next line takes the PROGRAM.TARGET attribute and replaces it with the value in
ProgramReference. This is the name of the application.

<TSSCRIPT value="Text" patch="*" comment="patch title" >

This line sets up when the value Text is replaced or patched. The asterisk means
replace in all occurrences. This affects the text placed on the caption or title bar.

A few lines down you will see:
<TSINCLUDE name="'script.htm">

This tag inserts the SCRIPT.HTM file containing the JavaScript used within the
WebBuilder HTML forms. It does not need an end tag.

The following tags set up the default colors for different controls that can be placed on a
page, in other words, it modifies the HTML for controls by setting color attributes, with a
default value, to the control’'s HTML code:

<TSSCRIPT comment=""Change the colors in the following lines to change the
colors of the generated application"></TSSCRIPT>

<TSSCRIPT tag="'<* FinalColor=Border>"

attr=bgcolor

value="""#dcdcdc"" comment="Border Color"™ phase=*>

<TSSCRIPT tag="'<* FinalColor=Header>" attr=bgcolor
value="""#a0b8c8"" comment=""Header Color"™ phase=*>

<TSSCRIPT tag="'<* FinalColor=HeaderB>" attr=bgcolor
value=""#ccccff"" comment=""Header Background Color" phase=*>
<TSSCRIPT tag="'<* FinalColor=Cell>" attr=bgcolor
value=""#ffffcc"" comment="Cell Color" phase=*>

<TSSCRIPT tag="'<* FinalColor=CellIB>" attr=bgcolor
value=""#fFFfff"" comment="Cell background color" phase=*>

<TSSCRIPT tag="'<*
comment=""Disabled
<TSSCRIPT tag="'<*

FinalColor=DisabledText>" attr=color value=""
text color'” phase=*>

FinalColor=HiLightCellColor>" attr=bgcolor

"Gray™"

value=""Yellow™" comment=""Highlight cell color"™ phase=*>
<TSSCRIPT tag="'<* FinalColor=HiLightTextColor>" attr=color
value="""Black"™" comment="Highlight text color" phase=*>

<TSSCRIPT tag="'<*

FinalColor=*>" attr=FinalColor remove phase=Runtime

comment="Remove pseudo tags from the table entries">

The lines above should be self-evident (and they are explained in detail in the Common
Questions and Answers section). The last line is what is interesting.

This is taking whatever attributes for color are used and replacing them with the defaults
set in the preceeding tag sets. It does this at runtime as the remove phase suggests.

84

Internet Application Guide

These two tag sets determine where images and public pages belong relative to the
running program:

<TSSCRIPT tag=img attr=src replace="IMAGES"™ value="Public" allowblank
comment=""Correct the path to images (the public directory)'>
<TSSCRIPT tag=img attr=src replace="PUBLIC" value="Public" allowblank
comment=""Correct the path to the public directory'>

These two replace attributes are filled in at runtime with the correct reference to the
PUBLIC folder. It differs between the linked in broker and a live deployment, since they
usually are in different folders.

This means images must be in the PUBLIC folder and are referenced by “/Animage.GIF”
or “/SubFolder/Mylmage.GIF”".

The body tag introduces the body of the document. Look at this line:

<body finalcolor="Page" bgcolor="white" onload="onBodyLoad()""
onunload=""onBodyUnload()"">

This says that each page loaded gets a white background. The onload event occurs
before the user agent (the browser) draws anything. The parameter is a script. The
onunload event whenever an action is taken that will change the current target such as a
link, HTML form completion or browser close. Again, the parameter is a script. Both are
found in SCRIPTS.HTM.

<TSSCRIPT tag=form attr=action value="ProgramReference'>
<TSSCRIPT tag=form attr=method value="FormMethod'>
<TSSCRIPT tag=form attr=enctype value="FormEncoding'>

The lines above set up the attributes for the next line of code that begins the HTML form
used for all WebBuilder pages. All actions returned to your application are done so
through this HTML form or by direct JavaScript SUBMIT().

<form name=""ClarionForm"” method="GET"
action=""PROGRAM.TARGET" onsubmit="return (submitSuppress--
== 0);">

The next line creates a hiddenHTML form control with a value:

<input type="HIDDEN" name="__Special__" value>

The source below begins an HTML <table>, </table> tag set.

Skeleton Guide 85

All HTML generated as a representation of your Clarion procedure window is enclosed
within HTML tables. This provides a method to handle placement of controls and text for
display within a browser:

<table finalcolor="Border" border="0" cellpadding="4" cellspacing=""2"
width=""100%"">
<tr finalcolor="Header">

<td width=99%>

<TSSCRIPT value=Title>
Page Title

</TSSCRIPT>

</td>

Embedded within the HTML tables, used throughout the skeletons for control placement,
you will find other tag sets such as:

<th>, </th> Denote a table header row.
<tr>, </tr> Denote a table row.

Within these table row tags you will find <td>,</td> tag pairs. These tags create the
individual cells within a table row. The "d" in "td" is for data.

The HTML source above defines the top row of cells that represent the titlebar of your
procedure window. This table row uses the predefined "Header" color, as discussed
earlier, for the background for the "Page Title." "Page Title" is the text you display in your
procedure titlebar.

<td width=1%>
<TSSCRIPT tag=a attr=href replace="NAME" value="Name"'>

</TSSCRIPT>
</td>

The <td> tag is a table data cell. The width of the cell is expressed as a percent of
available space. The percent means to use the smallest space possible, but if more is
needed, then the size will grow as needed. The <a> anchor tag is defining an href to
some JavaScript for event processing. In other words, if this image is clicked, a close
window event is signaled.

86

Internet Application Guide

<tr>
<td colspan="2">

</td>
</tr>

The colspan attribute attribute specifies the number of columns spanned by the current
cell. The image name is set to ZONE:Menubar, meaning that this column will contain the
menu items.

The rest of the skeleton is code covered in the preceeding text, but with different settings
and the required end tags.

Script.htm

This skeleton sets up the needed JavaScript functions. It is found in the Skeleton sub
folder. If you recall in the previous section for the window skeleton, there is a line that
says:

<TSINCLUDE name="script.htm">

This is a TSSCRIPT command to include another file. This file contains JavaScript. Look
at the first line:

<SCRIPT type=""text/JavaScript'>

The <SCRIPT> tag is HTML. This introduces or starts a script. The type attribute is there
as there isn't a standard for the language attribute. In this script, the text/JavaScript is the
standard content type for JavaScript. Other examples of content types include text/html,
image/png, image/gif, video/mpeg, text/css, and audio/basic.

The next line begins an HTML comment that surrounds all the JavaScript commands and
functions:

<I-- Hides script from old browsers

The end of this HTML comment can be found at the bottom of this file just above the last
line. This may seem confusing at first, but the key to understand why this works is that
you are working with two different languages. The <!-- is the HTML comment. JavaScript
comments start with double slashes (//) or slash-asterisk (/*) for multi-line comments.
Thus, this entire file is ignored by browsers that cannot handle JavaScript.

Also, you will notice the // JavaScript comment characters are also commenting the end
HTML comment. This is because JavaScript will try to interpret the --> characters and it
can’t. It will result in JavaScript errors if left off.

What is between these comments is the actual JavaScript used in the skeletons. If you
wish to add your JavaScript functions, simply add them to this file. We recommend that
you add a comment or two if you do.

Skeleton Guide 87

The purpose of this chapter is not to teach you JavaScript. Since there are JavaScript
functions listed throughout the skeletons, it is worth noting where you may find them.

If you view source while your application is running, you will see all the JavaScript in the
generated HTML file.

Box.htm

This is a small skeleton. Its sole purpose is to draw a box, or represents a BOX control.
But where is the box drawn? And around what? Lets examine some code:

<TSSCRIPT tag=table attr=bgcolor value="FillColor"™ first>

Some TSSCRIPT to define table background color attributes.

<table border=2>
<tr>
<td>
<img width="300" height="200" name=""ZONE:Contents"
alt="Wizard will place controls in here'">
</td>
</tr>
</table>

These lines do the magic. The first defines the width of the border. In this case, it is 2
pixels wide, all around the table.

For each table row (<tr>) there is one table data cell <td>). In it is used the image tag with
a fixed height and width. It is replaced at HTML generation time with values based on
elements that would make up a table. The above is sandwiched in TSSCRIPT tags.

The other lines are discussed in the window.htm section. This skeleton is used when you
use a BOX control on your window. The generated HTML code appears like this:

<I-- Box.htm -- Start -->
<table border=2>
<tr>
<td>
String in a box
</td>
</tr>
</table>
<!-- Box.htm -- End -->

88

Internet Application Guide

And this is what it looks like at runtime:

43 Ccaption - Microsoft Internet Explorer
J File Edit Miew Favorites Tools Help |
« =+ 9 i a @H G | B »
Bachk s Erd Stop Fiefresh - Haome Search Fawvartes History 4 il
| Address [@] hip://127.0.0.1/50/TESTX. himl | @Go |J|_inks »
Caption
v 0K Cancel X
String in a box
.|

Button.htm

This is the skeleton that controls the look and feel of buttons. This skeleton actually has
two sections. These sections start with these lines:

<TSSCRIPT include="Icon 1= """>
<TSSCRIPT omit="lIcon 1= """>

These lines are can be read as:

"Include this section of code if ‘lcon’ is NOT blank." In other words, if this button includes
an image, include the text between this TSSCRIPT tag and its ending </TSSCRIPT> tag.

"Omit this section of code if ‘lcon’ is NOT blank." In other words, if this button includes an
image, omit the text between this TSSCRIPT tag and its ending </TSSCRIPT> tag.

The next series of code (starting with the section that has images on buttons) has these
TSSCRIPT lines:

<TSSCRIPT include="Disabled">
<TSSCRIPT tag=input attr=src value="Image'>

<INPUT type="image® ALT="Disabled® SRC="SRC'>
</TSSCRIPT>
</TSSCRIPT>

This is script to have a placeholder for disabled buttons. It simply replaces the attributes
of a particular button with its actual attributes.

Skeleton Guide 89

The next line of script is for buttons that are not disabled. This is done starting with this
line:

<TSSCRIPT omit="Disabled'>

The script in this section simply checks for image placement, either left or right justified
and writes the appropriate HTML code, including the spacing of the button, which is
placed in a <table>. If there is no text on a button (image only), then the button is
rendered accordingly.

The remaining script deals with text only buttons.

This skeleton is used for all button controls on a page and calls the JavaScript functions
to process the button. In the case of text only buttons, it uses the HTML submit attribute
for input. No JavaScript is required in this case.

Here is the resulting HTML code generated with a window with two buttons, one left
justified, the other right:

<TABLE cellpadding=0 cellspacing=0 border=0 WIDTH=100%><TR><TD
WIDTH=""8%""></TD>
<TD WIDTH=""29%"" COLSPAN=2>
<table cellspacing=0 cellpadding=0><tr>
<td>

</td>
<td>
0K</td>
</tr></table>
</TD>
<TD WIDTH=""7%""></TD>
<TD WIDTH=""29%">
<table cellspacing=0 cellpadding=0><tr>
<td>Cancel</td>
<td>

</td>
</tr></table>
</TD>

90

Internet Application Guide

Check.htm

This is the check box skeleton. When you use a CHECK control, this skeleton is used to
generate the HTML code for it.

<TSSCRIPT include="Disabled">

<TSSCRIPT include=""Checked'>
[x1
</TSSCRIPT>
<TSSCRIPT omit=""Checked">

</TSSCRIPT>
<TSSCRIPT value=DisplayText>
Checkbox text
</TSSCRIPT>

</TSSCRIPT>

The above handles the disabled check boxes, whether they are checked or not. Notice
that it includes the default colors from the window skeleton.

The enabled checkbox uses JavaScript to sumbit the actions for the control:

<TSSCRIPT omit="Disabled">
<TSSCRIPT tag=input attr=name value="Name''>
<TSSCRIPT tag=input attr=id value="Name'>
<TSSCRIPT tag=input attr=checked when=""Checked">
<TSSCRIPT tag=input attr=onClick text="icSubmitForm()"
when=""SubmitOnChange"">

<TSSCRIPT tag=label attr=for value="Name''>
<label for="above'>
<TSSCRIPT value=DisplayText>Checkbox text</TSSCRIPT>
</label>
</TSSCRIPT>
</TSSCRIPT>
</TSSCRIPT>
</TSSCRIPT>
</TSSCRIPT>
</TSSCRIPT>

The reason for the difference is that disabled controls do not generate events, thus it is
overkill to have JavaScript render it when HTML is fine.

Skeleton Guide

91

This is the HTML code generated at runtime:

<TD WIDTH=""43%"">
<I-- Check.htm -- Start -->
<input type="‘checkbox" value="1" name=CHECK1 id=CHECK1>
<label for="CHECK1">Checked
</label>
<I-- Check.htm -- End -->
</TD>
<TD WIDTH=""48%"">
<!-- Check.htm -- Start -->

X1
Checked - disabled

<l-- Check.htm -- End -->
</TD>

<TD WIDTH=""4%"></TD>
</TR><TR><TD WIDTH="5%""></TD>
<TD WIDTH=""43%"">
<I-- Check.htm -- Start -->
<input type=""checkbox" value="1" name="CHECK1_ 2~
id="CHECK1_2">
<label for="CHECK1l_2">Un Checked
</label>
<I-- Check.htm -- End -->
</TD>
<TD WIDTH=""48%"">
<I-- Check.htm -- Start -->

L1

Un Checked - disabled

<l-- Check.htm -- End -->
</TD>

92

Internet Application Guide

And this is how it looks in a browser:

3 Caption - Microsoft Internet Explorer
J File Edit Miew Fawvorites Tools Help |
% 9 i D @ By i
Each Frrisand Stop Refrezh Home Search Fawaritez Hiztary Mail
| Address [&] hite.//127.0.0.1/50/TESTX b =] 6o |[Links »
Caption
[#] Checked - disabled
[1Un Checked - disabled

Combo.htm

This is the skeleton for COMBO controls.

Detail.htm

This is used when making shopping cart applications.

Email.String.htm

This skeleton is used to make an anchor tag (<a>) with an href attribute of
mailto:<EmailAddress>. The EmailAddress needs a properly formatted email address
and parameters.

Entry.htm

This skeleton is used for ENTRY controls. For each entry control populated on a window,
the skeleton produces the correct HTML code for the entry. It incorporates the attributes
for the control.

If an entry control is read-only, then these skeleton code takes care of that:
<TSSCRIPT include="Disabled || ReadOnly">

<TSINCLUDE Name="displayText.htm'>
</TSSCRIPT>

This just uses a different skeleton for these types of controls, they just display them as
text.

Skeleton Guide 93

This section is for entry controls that are not read-only or disabled:

<TSSCRIPT omit="Disabled || ReadOnly'>

<TSSCRIPT tag=input attr=name value="Name">

<TSSCRIPT tag=input attr=value value="DisplayText'>

<TSSCRIPT tag=input attr=type text="Password" when="Password">

<TSSCRIPT tag=input attr=size value="(Width+2)/4">

<TSSCRIPT tag=input attr=onChange text="icSubmitForm(Q"
when=""SubmitOnChange"*>

<TSSCRIPT tag=input attr=onFocus text="this.select()"
when=SelectOnFocus>

The above simply gets the entry name, its prompt text, password type entries (if
applicable), default width and set up the JavaScript to detect the event when it is
selected.

<TSSCRIPT include="Req'>
<table border="0" bgcolor="#FF0000" cellspacing="1" cellpadding="0">
<tr><td>
<input type=text>
</td></tr>
</table>
</TSSCRIPT>
<TSSCRIPT omit="Req">
<input type=text>
</TSSCRIPT>
</TSSCRIPT>
</TSSCRIPT>
</TSSCRIPT>
</TSSCRIPT>
</TSSCRIPT>
</TSSCRIPT>
</TSSCRIPT>

The next section places a red border around the entry control if the entry is required. The
other attrbutes describe how thick the border is, how far around the entry control the
border is and any padding.

94

Internet Application Guide

Here is what a entry page could look like:

-3 Caption - Microsoft Internet Explorer

inle Edit Miew Favorites Tools Help |
J e« 5 0 d | a @ @B S >
Bach Eamand Stop Refresh Home Search Fawvortes Higtony bdail Frirt
| address [&] hip.//127.0.0.1/50TESTX il | @ |J|_inks =
[
Caption
Cust Number: 0
Company: |
First MName: |
Last MName: |
| |

And this is the HTML code for the company name in the above example:

<I--Entry.htm -- Start -->
<input type=text name="CUS_COMPANY" size=22 onFocus="this.select()">
<I--Entry.htm -- End -->

The following HTML code is for the required entries:

<I--Entry.htm -- Start -->
<table border="0" bgcolor="#FF0000" cellspacing="1" cellpadding="0">
<tr><td>
<input type=text name="CUS_FIRSTNAME" size=22 onFocus="this.select()">

</td></tr>

</table>
<I--Entry.htm -- End -->
Grid.htm

This is the grid skeleton, used when a browse grid control is placed on a LIST control.

Skeleton Guide 95

Group.htm

This is the skeleton used when a GROUP control is populated on a window, Group
controls can be used to group related subjects together or they are used with radio
buttons.

<TSSCRIPT include=Boxed>
<TSSCRIPT tag=table attr=bgcolor value="BorderColor" first>
<table width=""100%"">
<tr>
<td>

The above first checks to see if the group is boxed. If it is, then it needs to determine the
border color of the box. The table width attribute is expressed as a percent of available
space, in this case, use all that is available.

The next section simply defines how wide the border is and what the text of the group
structure is based on the window control.

<table border="0" width="100%"">

This next section shows an interesting aspect of TSSCRIPT. In this case, everything that
is between the beginning and end tags is replace by real values, but only if there is some
text to substitute.

<TSSCRIPT include="DisplayText!=""">
<tr finalcolor="Header"'">
<td><TSSCRIPT value=DisplayText>
Header Text
</TSSCRIPT>
</td>
</tr>
</TSSCRIPT>

If the boxed attribute is not set, then this part of the skeletons is used:

<TSSCRIPT omit=Boxed>

<img width="500" height="261" name="ZONE:Contents" alt="Wizatrons will
place controls in here'>
</TSSCRIPT>

96 Internet Application Guide

The following HTML code is what the skeletons generate for a simple group:

<I--Group.htm -- Start -->
<table width=""100%"">
<tr>
<td>
<table border="0" width="100%">
<tr bgcolor="#a0b8c8">

<td>
Group 1
</td>
</tr>
<tr>
<td>
String in group one</td>
</tr>
</table>
</td>
</tr>
</table>

<!--Group.htm -- End -->

And this is for the radio groups:

<I--Group.htm -- Start -->
<table width="100%">
<tr>
<td>
<table border="0" width="100%">
<tr bgcolor="#a0b8c8">
<td>
Group Two
</td>
</tr>
<tr>
<td>
<TABLE cellpadding=0 cellspacing=0 border=0><TR><TD WIDTH=""13%""></TD>
<TD WIDTH=""48%"">
<I-- Radio.htm -- Start -->
<input type="Radio" name="OPTION1$Choice" id="OPTION1_RADIO1"
value=1><label for="0OPTION1_RADIOl1">Radio 1</label>
<I-- Radio.htm -- End -->
</TD>
<TD WIDTH=""39%""></TD>
</TR><TR><TD WIDTH=""13%""></TD>
<TD WIDTH=""48%"">
<I-- Radio.htm -- Start -->
<input type="Radio" name="OPTION1$Choice™ id="OPTION1_RADIO2"
value=2><label for="OPTION1_RADIO2">Radio 2</label>
<!l-- Radio.htm -- End -->
</TD>

Skeleton Guide 97

<TD WIDTH=""39%""></TD>
</TR></TABLE></td>
</tr>
</table>
</td>
</tr>

</table>
<!I--Group.htm -- End -->

If you naotice, it includes the radio skeleton (see the section on radio skeletons). This is
what the HTML code looks like at runtime:

Hotstring.htm
This skeleton is designed to be used with the template interface. Notice these two lines:

<meta name="ts-control' content="sstring">
<meta name="ts-capabilities" content="hotlink'>

They align with the two template entry controls, control and capabilities. This creates a
link from a string.

Image.htm

This small skeleton handles images on your page.
Take a look at these lines (which is really all there is to this skeleton):

<I-- Image.htm -- Start -->

<TSSCRIPT tag=a attr=href value=""javascript:icSubmit(\" "+Name+"=1\")""
when=SubmitOnChange>

<TSSCRIPT tag=img attr=alt value="AltText">

<TSSCRIPT tag=img attr=src value="Image'>

<TSSCRIPT tag=img attr=width value="PixelWidth">

<TSSCRIPT tag=img attr=height value="PixelHeight'>

<TSSCRIPT tag=img attr=border text="0" when=SubmitOnChange>
<a>

The first line sets up the JavaScript to process an event, such as when a record is
changed, thus a refresh of the image is needed.

The next lines set up the ALT text, the actual image, the image height and width (in
pixels) and a border. All these are replaced in the last line, like this:

<I-- Image.htm -- Start -->
<a>
<I-- Image.htm -- End -->

98

Internet Application Guide

And this is what an image looks like in the browser:

3 Caption - Microsoft Internet Explorer

J File Edit Miew Favorites Tools Help |
- = Q9 b Q &G @ | B S ”
Eack Fonward Stop Refresh Home Search Favorte: Histomw b ail Frirt
| Address [@] hip:/4127.00.1 50 TESTH himl =] @60 | |Links »
Caption
J

Item.htm

This skeleton produces the menu items. If the menu item is a separator, then it produces
the HTML tag for horizontal line, <HR>. If the menu item is disabled, it displays the text in
the disabled color (see the Window skeleton).

If the menu item is clicked, this is detected by the JavaScript icSubmit function (see the
Scripts skeleton).

List.htm

This sets up a drop list control. The list itself is populated by another skeleton (see the
Select skeleton).

Menu.htm
This skeleton handles the menus.
The generated HTML looks like this:

<Il--Menubar.htm -- Start -->
<table border=0>
<tr valign=top>
<td>
<table border=0 bgcolor="#dcdcdc'>
<tr bgcolor="#a0b8c8">
<td>
Browse
</td>
</tr>

Skeleton Guide

99

<tr><td>

<NOBR>Customers</NOBR>

</td></tr>
</table>
</td>
</tr>
</table>

<!l--Menubar.htm -- End -->

The above code looks like this

<2 Caption - Microsoft Internet Explorer

J File Edit Miew Faworites Tools Help |
- > 2 a Q@ & 9 B I >
Bach FEansand Stop Refresh Home Search Favontes History (i ET Print
| Address (@] hitp//127.0.0.1/50/ TESTX himl x| @6 |J|_inks o
Caption
Browse
Customers

This is the skeleton code that produced the above:

<I--Menu.htm -- Start -->

<form>

<TSSCRIPT value="EmbedBeforeControl" type=html>
</TSSCRIPT>

<td>

<table FinalColor=Border border=0>
<tr FinalColor=Header>
<td>
<TSSCRIPT value=DisplayText>
<p>
This i1s the text
</p>
</TSSCRIPT>
</td>
</tr>
<tr FinalColor=CellColor><td>

</td></tr>

100

Internet Application Guide

</table>
</td>
<TSSCRIPT value="EmbedAfterControl™ type=html>
</TSSCRIPT>
</form>
<I--Menu.htm -- End -->

Menubar.htm

This skeleton is little different than menu. It is used only when you do not have a drop
menu, but a menu bar with items only. The following HTML code is generated at runtime:

<I--Menubar.htm -- Start -->
<table border=0>
<tr valign=top>

<NOBR>Exit!</NOBR>

</tr>
</table>
<!--Menubar.htm -- End -->

This is what is looks like in the browser:

<3 Caption - Microsoft Internet Explorer

J File Edit Miew Favorites Tools Help |
« =5 9 [@ @ | B S >
Biack Farand Stap Refresh Haome Search Favortes Histary b aill Print
| Address [@] hitp.//127.0.0.1/50/TESTX. himl | @B |[Links »
Caption
Exitl
H

The skeleton that produced it is as follows:

<!--Menubar.htm -- Start -->
<TSSCRIPT value="EmbedBeforeControl" type=html>
</TSSCRIPT>

<table border=0>
<tr valign=top>
<img name=""ZONE:Contents[width=1%]" alt="Wizatrons will place
controls in here'>
</tr>

Skeleton Guide 101

</table>

<TSSCRIPT value="EmbedAfterControl" type=html>
</TSSCRIPT>

<!--Menubar.htm -- End -->

Panel.htm

This skeleton creates panel controls in HTML. The effect is that you can use this control
to create nice backgrounds around controls.

The skeleton code is as follows:

<table FinalColor=Border>
<tr>
<td>
<table FinalCoor=Header border="0" cellpadding="0" cellspacing="0" width="100%">
<tr>
<td><img width="300" height="200" name="ZONE:Contents"
alt="Wizatrons will place controls in here"></td>
</tr>

</table>
</td>
</tr>
</table>

Which makes it look similar to this:

4} Caption - Microsoft Internet Explorer

J File Edit Miew Favorites Tools Help |
e« = 9 at Q9 G 9 B S >
Back FEanyard Stop Fefresh ~ Home Search Favorites History Mail Frint
| Address [&] hitp://127.0.0.1/50/TES T himl x| @6 |JLinks =
Caption
String in a panel

The actual HTML code is as follows:

<I-- Panel_htm -- Start -->

<head>

</head>

<table bgcolor="#dcdcdc">
<tr>

102

Internet Application Guide

<td>
<table FinalCoor=Header border="0" cellpadding="0" cellspacing="0"
width=""100%"">
<tr>
<td>
String in a panel</td>
</tr>
</table>

</td>
</tr>
</table>
<!-- Panel.htm -- End -->

If you notice, there is no TSSCRIPT for the panel, yet it uses “variables” set by
TSSCRIPT commands. These come from the window skeleton.

Prompt.htm

The Prompt skeleton includes the DisplayText skeleton to do its work. Other than two
embed points, that is all there is. See DisplayText.

Query.htm

The Query skeleton is used for QBE controls and is used when a user is performing QBE
functions. The HTML produced is as follows:

<I-- Start of Query.htm -->
<input type="HIDDEN" value="0" name="Feql020$Choice">
<input type="SUBMIT" value=" " name="Feql1020*
onClick="cycleQuery(this, ClarionForm.Feql020%Choice) ">
<I-- End of Query.htm -->

This code is produced for each control in the query dialog. The QBE template default is
for a form interface and this is how it is rendered in a browser:

Skeleton Guide

103

3 Query by Example Settings - Microsoft Internet Explorer

inle Edit Wiew Fawvorites Tools Help

J«.».@ at

Bach Foanyard Stop Refresh Home

Search Favortes History

B g

Mail Frint

| Address [@] kitp:.//127.0.0.1/50/TES T himl

j @ hio |JLIFIkS &

Query by Example Settings

Saved Queries

Query Settings

|

Company:
First Marme:
Last Mams:
State:

Zip Code:
FPhone Type:

%I Cancel | Clear

You cannot use the list version of QBE in a web application as it uses edit-in-place. You
will get a warning message about this if you do.

The buttons to the right of the entries set the matching rules (greater than, less than, etc)
and work just like the desktop version. Each press of these buttons cycles through all the
valid choices. This is done by these lines of skeleton code:

<TSSCRIPT tag=input attr=onClick replace="NAME" value="Name">

<input type="SUBMIT" value=" " name="NAME" onClick="cycleQuery(this,
ClarionForm.NAME$Choice)'>
</TSSCRIPT>

It calls a JavaScript function called cycleQuery. This function is defined in the scripts.htm
file. The function is simple and if you examine the code, it is not too dissimilar to the way
it would be coded in Clarion:
function cycleQuery(cur, choice)
{
submitSuppress++;
choice.value = (Number(choice.value) + 1) % 5
switch (Number(choice.value))
{
case 0: cur.value - "; break;
case 1: cur.value "
case 2: cur.value
case 3: cur.value
case 4: cur.value

}

= "; break;
">="; break;
"<="; break;
"<>"; break;

}

The switch command is the same as the CASE in Clarion. The case is the same as the
OF.

104

Internet Application Guide

Radio.htm

This is the radio button skeleton. It is used when radio buttons are displayed. While radio
buttons are used on lists to indicate the highlighted row, this is done with another
skeleton. See Table.htm.

For option groups (groups that contain radio buttons), the following is the HTML
generated for each radio button:

<!-- Radio.htm -- Start -->
<input type="Radio"” name="OPTION1$Choice” id="OPTION1_RADIO1"
value=1><label for="OPTION1_RADIO1">Radio 1</label>

<l-- Radio.htm -- End -->

Skeleton Guide

105

It looks like this when running in a browser:

3 Caption - Microsoft Internet Explorer

J File Edit Miew Favorites Tools Help |
« =5 9 faf @ @ 4 | B S ”
Each Fonward Stop Fiefresh Home Search Fawvorites Higtory b ail Frint
| Address |&] hip://127.0.0.1 50/ TESTH himl | @Go |J|_inks =
Caption
Option 1
© Radio 2

The skeleton code for generating HTML radio buttons is as follows:
<TSSCRIPT omit="Disabled">
<TSSCRIPT tag=input attr=id value="'"Name"'>

<TSSCRIPT tag=input attr=Name replace=""NAME" value="Container_Name'>
<TSSCRIPT tag=input attr=checked when="Container.ChoiceFEQ==FEQ"">

<TSSCRIPT tag=input attr=disabled when="Disabled">

<TSSCRIPT tag=input attr=onClick text="icSubmitForm()"

when=""SubmitOnChange || Container.SubmitOnChange'>
<TSSCRIPT tag=input attr=value value="ChildIndex'>
<input type="Radio" name="NAME$Choice'>
<TSSCRIPT tag=label attr=for value="Name'>
<label>
<TSSCRIPT value=DisplayText>
</TSSCRIPT>
</label>
</TSSCRIPT>

The above is used only when the radio button is enabled. If disabled, it includes the

DisplayText skeleton.

The various TSSCRIPT lines gather information about the radio button, including it's Field

Equate and setting up event handling via a JavaScript function.

This is so that the HTML code that declares an input of radio type, also gives a hame to

this control. As you can see in the generated HTML, the TSSCRIPT commands above

build the input tag.

Region.htm

This skeleton is used for REGION controls.

106

Internet Application Guide

Sheet.all.htm
Not documented at this time.
Sheet.one.htm

This is the default skeleton used when a sheet control is used. Even with sheet controls
containing other sheet controls on your window, this skeleton will generate the HTML
code to render it in your browser.

This skeleton does not do much as the code below shows:

<I-- Sheet One.htm -- Start -->

<TSSCRIPT value="EmbedBeforeControl' type=html></TSSCRIPT>

<IMG name="ZONE:Default:Contents" alt="Wizatrons will place controls in
here'>

<TSSCRIPT value="EmbedAfterControl" type=html></TSSCRIPT>

<I-- Sheet One.htm -- End -->

The window skeleton causes the tab skeleton to be included in the sheet. See Window
and Tab skeleton sections.

Sheet.two.htm

Not documented at this time.

Spin.htm

This skeleton gathers data and attributes about spin controls on a window and renders
the HTML code to produce the control, complete with event trapping.

There are two major sections (if the control is enabled, otherwise it uses the DisplayText
skeleton to represent a disabled control - See DisplayText skeleton).

If the spin control does not have a From entry, this section of skeleton code is used:

<TSSCRIPT Omit="From!=""">

<table cellpadding="0" cellspacing="0"><tr><td>

<TSSCRIPT tag=input attr=value value="DisplayText'>

<TSSCRIPT tag=input attr=name value="Name''>

<TSSCRIPT tag=input attr=size value="(Width+2)/4">

<input type="TEXT" value="Text" name="NAME'>

</TSSCRIPT>

</TSSCRIPT>

</TSSCRIPT></td>

<TSSCRIPT tag=input attr=onClick replace="NAME" value="Name''>

<TSSCRIPT tag=input attr=onClick replace="RANGEHIGH"
value="RangeHigh">

<TSSCRIPT tag=input attr=onClick replace=""RANGELOW" value='"RangelLow'>

Skeleton Guide

107

<TSSCRIPT tag=input attr=onClick replace=""STEP" value="Step">

<td><input type="submit" value="&It;"

onclick="spin(ClarionForm.NAME,-STEP,RANGEHIGH,RANGELOW) ; "'></td>

<td><input type="'submit" value=">"

onclick="spin(ClarionForm.NAME,+STEP,RANGEHIGH,RANGELOW) ;"'></td>

</TSSCRIPT>
</TSSCRIPT>
</TSSCRIPT>
</TSSCRIPT>
</tr></table>
</TSSCRIPT>

This is the generated HTML code:

<I-- Spin.htm -- Start

<table cellpadding="0" cellspacing="0"><tr><td>

-——>

<input type="TEXT" value="5.00" name="DTL_QUANTITYORDERED" size=14></td>

<td><input type="'submit" value="&It;"
onclick="spin(ClarionForm.DTL_QUANTITYORDERED,-1,999,1); "></td>
<td><input type="‘submit™ value=">"
onclick="spin(ClarionForm.DTL_QUANTITYORDERED,+1,999,1); "></td>

</tr></table>

<I-- Spin.htm -- End -->

The above will produce a spin box like the following image:

/3 Changing a Detail Record - Microsoft Internet Explorer

inle Edit View Favorites Tools Help |
J«.».@ﬁ@ﬁg@%vég,”
Eack Faryard Stop Refresh Home Search Favortes History tail Frint. Edit
| Address [&1 hitp:2/127.0.0.1/50/TESTX. hinl x| @G |JLinks &)0us ®
|
Changing a Detail Record
H <4 < | +
General General {cont.
Line Mumber: 0001
Product Mumber: IDDDDD18
Quantity Ordered: |5 jj
I~ Back Ordered
Price: $7 50
Tax Rate: IE.DDDD
Tax Paid: $2.14
Discount Rate: |5.DDDD
Discount: J$1.88
Savings: $0 26
ﬂl Cancel Help

108

Internet Application Guide

If the From entry is used (meaning it gets its values from a Queue), the following skeleton
code is used to produce the HTML code at runtime:

<TSSCRIPT Include="Froml=""">
<TSSCRIPT tag=input attr=name value="Name'>
<TSSCRIPT tag=input attr=value value="DisplayText'>
<TSSCRIPT tag=input attr=size value="(Width+2)/4">
<TSSCRIPT tag=input attr=onChange text="icSubmitForm(Q)"
when=""SubmitOnChange'">
<TSSCRIPT tag=input attr=onFocus text="this.select()"
when=SelectOnFocus>
<TSSCRIPT include="Req'>
<table border="0" bgcolor="#FF0000" cellspacing=""1"
<tr><td>
<input type=text>
</td></tr>
</table>
</TSSCRIPT>
<TSSCRIPT omit="Req"">
<input type=text>
</TSSCRIPT>
</TSSCRIPT>
</TSSCRIPT>
</TSSCRIPT>
</TSSCRIPT>
</TSSCRIPT>
</TSSCRIPT>

Splash.htm

This skeleton produces the HTML for splash procedures. This skeleton is a different
version of the window skeleton, as splash procedures usually have a different look and
feel than the appearance of the rest of the program. To this end, there are settings that
are different than the window skeleton.

Tip

If you like the style of the splash skeleton, you can use it as the skeleton for the window
of any procedure. You can do this by setting the window override in the local extension.

Only the differences between this skeleton and the window skeleton are covered in this
section. See Window.htm for more information.

Skeleton Guide 109

Outside of some TSSCRIPT differences, the following skeleton code is what makes the
difference:

<CENTER>
<table bgcolor="#ccccff" border="1" width=60%>
<tr>
<td valign="center" align="center'>

</td>
</tr>
<tr>
<td valign="center"™ align="center'>
<TSSCRIPT tag=a attr=href value="ProgramReference'>
Continue
</TSSCRIPT>
</td>
</tr>
</table>
</CENTER>

Most of the above is cosmetic (colors, alignments, borders, etc.). Inspect the <A HREF>
line. This adds a hyperlink that looks like this at runtime:

Continue

Sstring.htm

Not documented at this time.

String.htm

A very simple skeleton that includes another skeleton. See DisplayText.
Tab.all.htm

Not documented at this time.

Tab.one.htm

This skeletons shows the tabs on a sheet. Each tab is actually a link with a background
color. This skeleton does quite a lot to enure that the tabs work like the program’s
desktop equivalent.

<!-- Tab One.htm -->
<TSSCRIPT local name=SelectedTab value="phase=="runtime® ?
Container.Choice : ChildIndex">

This line sets up the current tab with the current key used for sorting. At runtime, the
attributes are replaced by the data in the program.

110

Internet Application Guide

A few lines down and you see this TSSCRIPT line:
<TSSCRIPT omit="Wizard">

This means that this procedure is not a Wizard style procedure. If it is, then all remaining
skeleton code is not used.

This line sets up a “loop” to process each tab on the procedure:

<TSSCRIPT repeat times=""Container._NumTabs" name=curTab>

This means that for every tab placed on the list, the remaining skeleton code sets up the
HTML code to be generated at runtime.

Now examine this code a few lines down:

<td FinalColor=Header nowrap>

<TSSCRIPT value="thisTab.DisplayText">SELECTEDTAB</TSSCRIPT>

</td>

This code uses some HTML code to space the text on the tabs and ensure they stay on
one line This is done with , which means “non-breaking space”. If this is not used,
the text on tabs could wrap unpredictably. Plus, it ensures that there is white space
before and after the text. This makes the text look even on all sides of the tab.

The next section sets up the events for selecting a different tab:
<td FinalColor=Border nowrap>
<TSSCRIPT tag=a attr=* replace="PROGRAM"
value="ProgramReference"'>
<TSSCRIPT tag=a attr=* replace=""NAME"
value=""Container.Name">
<TSSCRIPT tag=a attr=* replace="CURTAB" value="curTab">

<TSSCRIPT value="thisTab.DisplayText">UNSELECTEDTAB</TSSCRIPT>

</TSSCRIPT>
</TSSCRIPT>
</TSSCRIPT>
</td>

This section takes the values in the program (the TSSCRIPT lines), adds some non-
breaking spaces (for tab separation). It then uses a JavaScript function to process the
event for when a new tab is chosen.

Skeleton Guide 111

At runtime, the following HTML is generated (edited for content):

<!-- Tab One.htm -->
<table border="0" cellpadding="0" cellspacing="0" width=""100%"">
<tr align="left"><td>
<table border="0" cellpadding="2" cellspacing=""0" width=""1%"><tr>
<td nowrap bgcolor="#a0b8c8">

General

</td>
<td> </td>
<td nowrap bgcolor="#dcdcdc">

General
(cont.)

</td>
<td> </td>
<td nowrap bgcolor="#dcdcdc">

0Orders

</td>
<td> </td>
<td> </td>
</tr>
</table></td></tr>
<tr>
<td bgcolor="#a0b8c8">
<TABLE cellpadding=0 cellspacing=0 border=0 WIDTH="100%"><TR><TD
WIDTH=""2%"></TD>
<TD WIDTH=""27%"">
Company:
</TD>
<TD WIDTH="40%" COLSPAN=3>
<!--Entry.htm -- Start -->
1Entry controls here
<!--Entry.htm -- End -->
</TD>
<TD WIDTH=""10%""></TD>

<I-- /Tab One.htm -->

112

Internet Application Guide

The following is what it looks like:

3 changing a Customers Record - Microsoft Internet Explorer

in\e Edit Wiew Fawvorites Tools Help |
J«-»-@ﬁ@@@%-é@-”
Eack Forixard Stop Refresh Home Search Favortes History hd ail Frint Edit
| Address 8] hitp://127.0.0.1 50/ TES TR himl =] @6 |J|_inks &]Cus »
B
Changing a Customers Record

H 41 « L | + 7

General General {cont) Orders

Company: [aTT

First MName: E

M H

Last Mame: Eircrain |

Addrasst: 45 vy 35th Stree

Addressz: |Suite 209

City [Boca Raton

State: IFI_i

Zip Code: [33018

Fhone Mumber: [GB1) 2645354

ﬂl Cancel | ﬂl
|

Table.htm

This skeleton handles the way LIST controls on browse procedures are rendered with
HTML.

This group of skeleton code sets the text for each column header:

<TSSCRIPT repeat times="FromColumns'™ name=column>
<th>
<TSSCRIPT value="ColumnHeader[column-17]">
HEADERTEXT
</TSSCRIPT>
</th>
</TSSCRIPT>

This set of code a little further down, produces the radio buttons that indicate the current
row on the list:

<TSSCRIPT tag=input attr=name replace="NAME" value="Name"'>

<TSSCRIPT tag=input attr=value value="row">
<TSSCRIPT tag=input attr=checked value="1" when="Choice==row">
<TSSCRIPT tag=input attr=id replace="FEQ" value="Name'>

Skeleton Guide 113

<TSSCRIPT tag=input attr=id replace="ROWNO"™ value="‘row">
<TSSCRIPT tag=input attr=onClick text="icSubmitForm(Q"
when=""SubmitOnChange'>

<input type="radio" value="ROW"
name=""NAME$Choice" id="FEQ$ROWNO">

Further down is the code to format the text that appears in each cell of the list:

<TSSCRIPT local name="curColor" value="CellForeColor[row-1][column-1]">
<TSSCRIPT value="""" type=html
when=""curColor 1=0"></TSSCRIPT>
<TSSCRIPT tag=label attr=for replace="FEQ" value=""Name'>
<TSSCRIPT tag=label attr=for replace="ROWNO" value="row">

<LABEL FOR=""FEQ$ROWNO">
<TSSCRIPT value="CellText[row-1][column-1]=="" ? " " : CellText[row-
1][column-1]" phase=runtime>

CELLTEXT

After the closing tags, the navigation buttons are placed at the bottom of the list:

<TSSCRIPT include="NavigationControls'>

The navigation buttons are worthless if there is no event processing for each button. This
is done with calls to JavaScript functions:

<TSSCRIPT tag=a attr=href replace="NAME"™ value="Name">

<img ALT="First"
WIDTH=""32"" HEIGHT=""32"" SRC="PUBLIC/wizFirst.gif" border=0>

<img ALT="Prior"
WIDTH=""32"" HEIGHT=""32"" SRC="PUBLIC/wizPgUp.gif" border=0>

<img ALT="Up*
WIDTH=""32"" HEIGHT=""32"" SRC="PUBLIC/wizUp.gif" border=0>

<img ALT="Down*
WIDTH=""32"" HEIGHT=""32" SRC="PUBLIC/wizDown.gif" border=0>

<img ALT="Next"
WIDTH=""32"" HEIGHT=""32"" SRC="PUBLIC/wizPgDn.gif" border=0>

<img ALT="Last"
WIDTH=""32"" HEIGHT=""32"" SRC="PUBLIC/wizLast.gif" border=0>
</TSSCRIPT>

The skeletons generate the following HTML code at runtime:

<I-- Table.htm -- Start -->
<table border="0" width="100%" bgcolor="#dcdcdc">
<tr>

<td>

<table border="0" width="100%"">

<tr bgcolor="#ccccff">

<th width="2">

</th>
<th>

114 Internet Application Guide

State Code
</th>
<th>
State Name
</th>
</tr>
<tr bgcolor="#ffffff">
<td width="2">
<input type="radio” value="1" name="BROWSE_1%$Choice" id="BROWSE_1%$1-
checked=1>
</td>
<td>
<LABEL FOR="BROWSE_1%$1">
AK
</LABEL>
</td>
<td>
<LABEL FOR="BROWSE_1$1">
Alaska
</LABEL>
<I-- other rows and end tags edited for readability -->
<td bgcolor="#ccccff">

<img ALT="Prior"
WIDTH=""32"" HEIGHT=""32" SRC="/wizPgUp.gif" border=0>
<img ALT="Up*
WIDTH=""32"" HEIGHT=""32" SRC="/wizUp.gif" border=0>

<img ALT="Next"
WIDTH="32" HEIGHT="32" SRC="/wizPgDn.gif" border=0>

<Il-- Table.htm -- End -->

Skeleton Guide

115

You will have a list box similar to this at runtime:

43 Browse the States File - Microsoft Internet Explorer
J File Edit View Favorites Tools Help ‘
J",*-@ﬁ@@@%‘é@,”
Back Famyard Stop Refresh Home Search Favorites Histary il Frint Edit
| Address [&] p./127.0.01/50/TES T himl =] @G0 |JLmks &]Cus @
[~
by State Code
State Code State Name
& AK Alaska
© AL Alabama
AR Arkansas
© A7 Arizona
© CA California
© CO Colorado
o CT Connecticut
© DC District of Columbia
© DE Delawiare
© FL Florida
T« GA Georgia
o Hl Hawaii
A lowa
I R |
Inser | Change Delete |
Close Help =l
Text.htm

This is the skeleton that generates the HTML version of a TEXT control.

The skeleton can get the attributes of the text control, and give you an HTML versions of

the control.

<!-- Text.htm -- Start -->
<textarea rows="9" cols="25" wrap=off name="0RD_ORDERNOTE®"></textarea>
<!-- Text.htm -- End -->

The above is generated by the following skeleton code:

<!-- Text.htm -- Start -->
value="EmbedBeforeControl™ type=html></TSSCRIPT>

<TSSCRIPT
<TSSCRIPT
<TSSCRIPT
<TSSCRIPT
<TSSCRIPT
<TSSCRIPT
<TSSCRIPT
when=""Subm
<TSSCRIPT

tag=textarea
tag=textarea
tag=textarea
tag=textarea
tag=textarea
tag=textarea
itOnChange'>
tag=textarea

attr=name value="Name''>

attr=disabled value=1 when="Disabled'>
attr=readonly value=1 when="Readonly'>
attr=rows value=""(Height+4)/8">
attr=cols value="(Width+2)/4">

attr=onChange text=""icSubmitForm(Q)"

attr=wrap text="soft" when="1HScroll">

116 Internet Application Guide

<textarea rows="1" cols="20" wrap=off>

<TSSCRIPT value=DisplayText>String Text</TSSCRIPT></textarea>
<TSSCRIPT value="EmbedAfterControl” type=html></TSSCRIPT>
<I-- Text_htm -- End -->

The text control could look similar to this:

4} Caption - Microsoft Internet Explorer

inle Edit Miew Fawvorites Tools Help |

J«.-’.@ﬁ@@@%véﬁ”

Eack Fonward Stop Fefresh Home Search Favortes History M ail Frint Edit
| Address [@] hip:/127.0.01/50/TESTH himl =] @G0 ||Links &]cus >
Caption

This s a text box. vou |«
may add any text you
wish.

To enable text wrapping,

do not use the
horizontal scroll bar.|

¥
4 L

Toolbar.htm

All this skeleton code does in define an area in which button controls are placed. See
Button skeleton.

Summary

If you understand the pieces of the skeletons, then you can see how they fit together.
You can even author your own skeletons and simply write TSSCRIPT commands to
include them.

Skeleton Guide 117

118 Internet Application Guide

6 - Common Questions and Answers

Introduction

This section covers several common questions that we found to be helpful with getting
your application running quickly. The focus of these questions are the Skeletons,
although it is not restricted to them. For more information on Skeletons, see the Skeleton
chapter in this manual. The purpose of this section is to offer as many real world issues
as possible.

When an application is run in a browser, you can see the HTML code generated by the

skeletons (RIGHT-CLICK on a blank area of a page and choose View Source). This is
the best way to understand how the skeletons interact with your program to produce the
final result.

Common Questions

How do | set background colors for pages in my application?

This is controlled from the Window.htm skeleton. In this file, you will see a TSSCRIPT
line that is a comment about colors. The next set of lines defines TSSCRIPT tags and
their attributes. One of the attributes is a default color. Lets examine one of these lines:

<TSSCRIPT tag="'<* FinalColor=CellB>" attr=bgcolor
value="""#FFFFFf""" comment=""Cell background color' phase=*>

What this line is doing is stating that a new FinalColor tag, named CellB, has a default
background color attribute with value #ffffff. The phase=* means that is can be
overridden by any phase value later, for example; runtime. If you examine a few lines
further down you see this line:

<TSSCRIPT tag="'<* FinalColor=*>" attr=FinalColor remove
phase=Runtime comment='""Remove pseudo tags from the table
entries'>

This line is simply stating that whatever tag is being used now, use whatever color is
setup at runtime. This tells you that the line you need to change is the first one. You can
replace the #ffffff with another color, for example, ‘Green’.

Common Questions and Answers 119

The following is a list of color attributes and what controls they affect.

Border Toolbar

Fanels

List hox cell border
Lnselected tah

Header Title Bar
Selected tab
Groups
HeaderB List hox column header
Toolbars on list hoxes
Cell Sheet background (pseudo baorder)
CellB List hox cells
DisabledText Any text with the disabled attribute
active

HiLightCe]lCulur Cell color when BrowseGrid used
HiLightTextColor Cell color when BrowseGrid used

How can | set a default font?

You can do this with the tag. Since there are skeletons for each type of control
(CHECK, STRING, TAB, etc), setting the font for each of these files is labor intensive. It
also is considered a “no-no” for HTML 4.x specifications. See http://www.w3.org/MarkUp/
for comments about this. If you know you will need to support older browsers, then use
the tag. The previous link has specifics about this.

How can | implement Cascading Style Sheets?

A better way of using fonts is Cascading Style Sheets (CSS). For a good reference on
CSS standards, see http://www.w3.org/Style/CSS/ for a list of many resources on this
subject.

In short, a CSS sets a style for fonts and appearance and is used on tags, for example
<p> which begins a new paragraph. You could think of these as the event embeds for
HTML. When a new paragraph happens, insert the new CSS and activate it.

Not all browsers support this relatively new feature. The above link has a list of browsers
(and minimum version) that do.

120 Internet Application Guide

<head>

<meta http-equiv=""Content-Type" content="text/html; charset=iso-8859-1">
<title>This displays text in the title bar</title>

<link rel="stylesheet" type="text/css" href="__/mysheets/kewlstyle_css">

</head>

Skeletons support this feature too. You could modify one to use them. Here is an
example:

<l-- Window.htm -- Start -->
<html>
<head>

<title>
The Best of FAQs</title>
<style type=""text/css'>
</style>
<style type="text/css'>
</style>

You could also change the window skeleton as follows:

<TSSCRIPT value="EmbedBeforeHeadClose” type=html></TSSCRIPT>

<style type=""text/css”’><!-td{font-family: verdana,arial,sans serif;font-
size: x-small;}—></style>

<style type="text/css”’><!—pre{font-family: courier new,courier;font-size:

x-small;}—></style>
</head>

How can | have an image with text on a button?
Here is a way to make an image a link if your Skeleton (Image.htm) has the line:
<a>
to display the image.
Bracket this with TSSCRIPT as shown below.
<TSSCRIPT tag=a attr=href value="ImageLink"™ when="ImageLink!="""">
<a>

</TSSCRIPT>

Add the image in the IDE. On the Position tab set the width and height of the button. In
Internet Options - Controls - Properties - Properties - Insert.

Name: ImageLink

Type: String

Common Questions and Answers 121

Value: 'http://127.0.0.1/default.htm’

Do not check the Refresh when changed on the Events Tab.

Save all dialogs and compile and run.

The HTML that is sent to the client looks like:

<I-- Image.htm -- Start -->

<img src="/public/Mylmage.jpg"
width=88 height=21>

<I-- Image.htm -- End -->

As an alternative, you can make HTML buttons with images. This is done with buttons.
For example:

<BUTTON name="submit” value=""submit” type="submit”> Send</BUTTON>

In this example, the button is used to send data on a <FORM>.

How can | get better control over size & placement of controls?

Place related groups of controls inside Group structures on windows. Tables that are
generated are generated around these structures instead of around the individual
controls.

How can | use meta-tags?
To use meta-tags in a Clarion application, go to the embeds for a procedure. Find the

embed point, Internet, inside the <META> tag area. Insert your Dynamic or Static HTML
here.

122 Internet Application Guide

Embedded Source: Main _ O] x|
Exit Edit Wiew Mavigate
B I EIREGE RS |

| Insert |

= 'El Internet, inside the <META) tag area | Froperties |
> [E] Static HTML: <I-- the next embed shows how to set a meta tag that causes an expiration of this page fo —

& Dyeamic HTML '<META HTTPEQUINV="Expires" CONTENT=""& CLIPILEFT [Format[Taday(] - 1.@02]] Delete |
Friorit———

[~ Colurin 1

Source |
Filled |

Cloze |
Help |

|Interret, inside the <META> tag area

How can | make a pop-up window for data validation?

A commonly user web page technique is to open a new window when a link is selected.

<a
HREF=""JavaScript:void(0)”onClick="window.open(“http://www.softvelocity.com/cws/
c5launch.dl1/example/example.exe.0”,

?7 ,”toolbar=no,directories=no,captionbar=no, status=yes,menubar=no,scrol lbars=ye
s

location=no,width=550,height=400,resizable=yes”);”
onmouseover="self.status="Just the FAQs’; return true “>Go therenow

The embedded HTML code should be added in the Internet, before closing </HEAD> tag
embed point.

4+ Embedded Source: Main _ (O] x|
Exit Edit Wiew Mavigate
R A EE SRS |

| Inzert |

EI Static HTML: <1-- Javascript Pop-up help function ShowHelp(]-» .
Delete |

|—F'_riolity—

Common Questions and Answers 123

Prompts for StaticHTML
HTHL to ingert 0K,
L1--] avascript Pop-up help function ShowHelp()-> =
<zcrpt language="JavaScript'> — Cancel
<l
var HelpStyle =
""height=200, width=300, alwaysLowered=0_alwaysF ai Help
zed=0.channelmode=0.dependent=0, directanies=0,full —

screen=0 hotkeyz=0.location=0.menubar=0,rezizable
=[zciollbarz=1 statuz=0 titlebar=1 toolbar=0,z-lock=0

/4 this iz the function that iz call=d

function PopUprawURL) §

mylJRL ="/Help"' + myUFRL;

war remote = open(myRL, "Help", HelpStple];

if [rernote, opener == null] remote, opener = window;

e
</SCRIPT>

What is the difference between POST and GET and how do | change
between the two?

GET and POST are two ways that information is passed to the server from an
application. By default, a Clarion application uses the GET method.

The GET communicates with the server by appending the form data to the URL specified
by the action attribute (with a question-mark (“?”) as separator) and this new URL is sent
to the processing agent.

The POST method, communicates with the server by including the data in the body of the
form. It is then sent to the processing agent.

The GET method should be used when the form does not make changes to a database
or side-effects. Many database searches have no visible side-effects and make ideal
applications for the GET method.

If the service associated with the processing of a form causes side effects (for example, if
the form modifies a database or subscription to a service), the POST method should be
used.

124 Internet Application Guide

The GET method restricts form data set values to ASCII characters. Only the POST
method (with enctype="multipart/form-data”) is specified to cover the entire [ISO10646]
character set.

Common Questions and Answers 125

To set this, you should be on the extensions for the procedure you wish to change.

Prompts for WebProc

Ingert | Ernpertiesl Delete | .—i.l ‘?‘I

On the Properties tab enter:
Properties E |

Mame of properhy: | Formbd ethod

Type of property: {String = Cancel |
Walue: I FPOST!
Help |

The Window.htm skeleton has these lines in it (partially shown):

<TSSCRIPT tag=form attr=method value="FormMethod">
<TSSCRIPT tag=form attr=enctype value="FormEncoding'>
<form name="ClarionForm"” method=""GET"

The above defines a tag called form with a value of Form Method. The form name is the
name of this tag and its method. The template dialog simply changes the default value of
GET to POST.

If you wish to change this globally, then edit window.htm.

126 Internet Application Guide

How can | get server variables and their values?
You can obtain whatever information about properties that you wish from a skeleton.

What you need to do is to specify a Skeleton Property and then derive the GetProperty
method and return the global variable instead.

For example : Glo:Amount
In the skeleton:
<TSSCRIPT value="Amount'></TSSCRIPT>
In the procedure:
GetProperty

IF name="Amount"

RETURN CreateStringValue(Glo:Amount)

There is also a code template available to accomplish this task.

How can | create tooltips?

To have your buttons or images display a tooltip, place the text in the Tip prompt on the
control properties Help tab. The TIP will become an ALT= HTML attribute of the control.

How can | launch a Clarion application from a link?
You need to provide a link on the web page where the Clarion application is to be called
from. This can be an image, hyperlink, button, etc, depending on the effect you wish.

Here is an example:

<a href="http://somesite.com/cws/c5launch.dll1/demos/demo.exe.0""
Click here for a demo.

Common Questions and Answers 127

How can | add email capability to my applications?

All you need is an entry control for the email address. However, this does not give you
email capability. For the entry control, that contains the address, tell the skeletons about
the extended capability for the entry control. This is done via the Web procedure
extension. Just add email in the Extra Capabilities entry.

This skeleton formats data from a variable containing an email address so it is a “Mailto:”
hyperlink. To use this skeleton, you would specify the email capability property in the
Capabilities prompt in the Internet Connect template in the IDE (individual overrides for
a control).

<HTML>

<head>

<meta name=""ts-control” content="sstring”>
<meta name=""ts-capabilities” content="email”>
</head>

<BODY>

<I- email.string.htm — Start —>

<TSSCRIPT value="EmbedBeforeControl” type=html>
</TSSCRIPT>

<TSSCRIPT tag=a attr=href replace=NAME value=Contents>

<TSSCRIPT value=Contents>

</TSSCRIPT>

</TSSCRIPT>

<TSSCRIPT value="EmbedAfterControl” type=html>
</TSSCRIPT>

<I- email.string.htm — End —>

</BODY>

</HTML>

128 Internet Application Guide

INTERNET CONNECT 129

Part Il

Internet Connect

130 Internet Application Guide

TUTORIAL — Making a Web Application 131

7 - Tutorial—Making a Web Application

In Clarion, you can create an application from a data dictionary—with no coding required.
All you need to do is create the Data Dictionary then use the Application Wizard to make
a complete Windows application—in minutes! With Internet Connect, the Application
Wizard has an additional checkbox that lets you Web-enable the application you are
creating. This allows you to create a Web application with only one additional click of your
mouse!

In this chapter, you will:

* Use the Application Wizard to create a hybrid Web/Windows application from a
Clarion Data Dictionary, then run the program using your browser.

* Compile and deploy the application, then run it in a browser.

* Optimize that application for the Web using the template interface, recompile,
deploy it, and run it again.

* Modify the appearance of the application for the Web, recompile, deploy it, and
run it again.

This should all take about thirty minutes—without any “coding” on your part. By the
end of this chapter, you'll have a complete application for a simple order entry system.

Let's get started!

132 Internet Application Guide

Web Application Wizard

Creating a Hybrid Web/Windows Application

Starting Point:
You should have the Clarion development environment open.

This tutorial assumes that you installed Clarion in C:\Clarion6 and the Application broker
in C:\CWICWESB. If you used different directories, you will have to modify the instructions
accordingly. This tutorial also assumes that you have completed the tutorials in the
Clarion Getting Started and Learning Clarion topics and have a basic familiarity with the
Clarion development environment.

Create vour first Clarion Web application

1. On the Pick dialog, select the Application tab, then press the New... button.
This opens the New dialog.
2. Navigate to the \Clarion6\Examples\WebTutor folder from the Directories list.
3. Type WebOrder in the File Name field, then press the Save button.
This opens the Application Properties dialog.
4, Press the elipsis (...) button to the right of the Dictionary File entry box.
This opens the Select Dictionary dialog.

5. Highlight the WebOrder.dct (in the C:\Clarion6\Examples\WebTutor\ directory)
file then press the Open button.

Run the Application Wizard

1. Check the Application Wizard box, then press the OK button. If the Select
Application Wizard window appears, highlight Application Wizard — Create a New
Database Application, and then press the Select button.

2. After the Application Wizard opens, press the Next button past the next five
wizard screens, accepting the defaults. Make sure that the Generate
Procedures for all files in my dictionary check box is checked, and that the
Control Model is set to Toolbar.

TUTORIAL — Making a Web Application 133

4. Apphcation Wizard - Internet Connect |

The Application *izard can produce an application that will wark az bath a
windowsz and a [ntemet application. [This will alzo make the application
32hit.]

[Create an Intemet Enabled Applicabior:

<Back I MNexts I Einizh Cancel

3. Do Not Check the Create an Internet Enabled Application box, then press the
Next button. This step adds the Web Builder extension template to the
application. In this tutorial, we will be using the Internet Deployment template set.

g Application Wizard - Procedures & Reports x|

[f wou are creating new procedures with names that already exizt in vour
application, the ald procedures can be ovenaritten or the new procedures
cah be zuppreszed.

[dvenwrite esizing procedures

The procedure zpecified as pour First Procedure will alwaps be
ovenaritten by the application wizard!

Reparts can be generated far even file in the dictianarn. You map chooze
whether or not to generate these reportz.

[T Generate Feparts for each file
Selest Sort Dptiorn: |Single Key =

<Back I Hewuts I Einigh | Cancel |

4, Uncheck the Generate Reports for each file box, then press the Finish button.

134 Internet Application Guide

The Application Wizard creates the application.

EE WebOrder.app - Application Tree - |EI|E|

v X| @ B &

Procedurs |M|:u:|ule | Template I Hamel Eategnr_lgl Mudﬁiedl NE| m
-E Dat

+- win
-E]l Emfj
+- | Emtdg

= El EBrowseOrdersByORD:EyCustarmer [Browse] - Browse
— -El BrowseltemzByul TEM:AsEntered [Browse) - Brows
T El Updateltems [Form) - Form lkerms
: El SelectProduct [Browse] - Select & Produs—
=8 El UpdateQrders [Form) - Form Orders

> El SelectState [Browse) - Select a State Recorc

= El Updateltems [Form) - Form lkerms

El SelectPraduct [Browse] - Select a Produc

-~ [El UpdateCustamer [Fomm) - Form Custormer

«. El CalartShata (Proeal - Salact 2 Shata Placard ha
4| » < »

Add the Internet Deployment Templates

1. Press the Global Icon Button to access the Global Properties window.

2. In the Global Properties window, press the Extensions button.

TUTORIAL — Making a Web Application 135

3. Press the Insert button to add the Internet Deployment Application Extension as
shown below:

=i~] Clazz Intemet - Internet Deployment Templates «1.5
+ ~_ | Code Templates
— _ | Extenszion Templates

|nternet - Internet Application E sterzion

¢ - InkerProc - Intemet Procedure Extension
+-_ | Groups

7 Extension and Control Templates . =] B

[T Show on Global Properties

Window |§0ntr0| | DI |Adganc:ed | EII_assesI

—Page
V¥ Center window on page

Background caolar: COLOR:MOME J
Background image: J
—Winda
Background caolar: COLOR:MOME J
Background image: J
"window border width: 2 =
—Hell

™ Enable help for internet applications
[T Help ids are links within & bass document

WRL of help docunents:
Help winda stile

‘window Components. ..

4 4

Inzert | Delete |i| il
Help | oK. | Cancel | Apply |

4. Press the OK button to close the Extension and Control Template window. Press
the OK button on the Global Properties window to return to the Application Tree.

Make the Application

1. Choose Project » Make (or press the Make icon button on the toolbar).

Congratulations! Your first Web application is ready to deploy and run.

2. Press the OK button on the compile results window.

136

Internet Application Guide

Deploying the Application

The last step created WebOrder.exe. Since it is a Web-enabled application, it can now
run under Windows as a standard Windows executable or over the Web through the
Application Broker using a browser. Next we will deploy the application and the files it
needs to execute. Note that we are deploying this to a different directory on the same
machine, but the process would be the same to deploy the program to a server machine.

1.

2.

Open Windows Explorer (or Windows NT Explorer).

Copy WebOrder.exe from the C:\Clarion6\Examples\Webtutor directory to the
C:\CWICWEB\EXEC\WebTutor directory (You may have to create this directory).

We have provided sample data files in both directories. If you had local data files,
you would also need to deploy them.

Copy the files listed below from the C:\Clarion6\BIN directory to the
C:\CWICWEB\EXEC\WebTutor directory.

C60RUNx.DLL
C60TPSx.DLL
C60ASCx.DLL
C60DOSx.DLL

These are the support DLLs your application uses, including the runtime library
and database drivers.

This step is included here even though it may not be necessary on your WIN
95/98 development machine because these files are in your PATH. However, NT
server and XP behaves differently. Each user has a PATH and deploying the
DLLs with the .EXE ensures that the user accessing the application through a
browser has the support files available. This is explained in detail in Deploying
Applications.

Start the Application Broker by double-clicking on C60APS10.exe (or
C60APS.exe if you have the full version of the Application Broker) in the
C:\CWICWEB\ directory.

Start your favorite browser.

Next, test the Application Broker and your TCP/IP setup using the Localhost
loopback method:

TUTORIAL — Making a Web Application 137

6. On the Browser’'s URL line, type:

http://localhost/btest._htm
or

http://127.0.0.1/btest_htm

then press ENTER.

If you have the broker set to a port other that port 80, you must add that to the domain
portion of the URL. For example:

http://localhost:8080/btest.htm
or

http://127.0.0.1:8080/btest_htm

a Application Server Test - Microsoft Internet Explorer

File Edit Wiew Favorites Tools Help

Back v = - (D #at | @ zearch [GFavorites @Meda (% | By S B -

Address [&] http:f127.0.0.1/btest.him | @60 |Lnks | norton antivirus £ +

Clarion 6.0
Application Server

me to the Application Broker

Ifyau can stalled and running c

|@ Done

’_ ’_ ’_ | Internet

&

If the test Web page displays correctly, you have the application broker installed and
running correctly. If not, you should return to the previous chapter and reconfigure your
setup.

138 Internet Application Guide

Next, start the application in the browser:
7. On the Browser’'s URL line, type:

http://localhost/exec/webtutor/weborder.exe.0

or

http://127.0.0.1/exec/webtutor/weborder.exe.0,

then press ENTER.

If you have the broker set to a port other that port 80, you must add that to the domain
portion of the URL. For example:

http://1ocalhost:8080/exec/WebTutor/WebOrder.exe.0
Congratulations! Your first Web application is running.

<} Application - Microsoft Internet Explorer - 10| x|

File Edit Wiew Fawarites Toals Help ﬁ
Back - = - () i | ‘@hsearch []Favorites dfMedia »

Address [&] http:jfbob-fj7a3600 v | @Go | Links | Narton Antivirus) ~

F
—

Application

File
Exit

Erowse
Erowse Customer Information File

Erowse Product Information File
x| -
|E:| Cone l_ l_ l_ Local inkranet

| KN

TUTORIAL — Making a Web Application 139

Now you can explore this new application and compare it to the manner in which it runs
under Windows. You will notice that there are some minor differences between the two,
because of the platform, but it will look and feel very much the same.

8. When you are finished, click on the Exit hyperlink.

This closes the application. Notice the browser now displays a blue Web page with a
hyperlink to restart the application. This page is created by the application broker
automatically unless you specify a page to return to on exit in the Global Internet
Application Extension template.

Leave your browser open with the restart page displayed. You will use this page to restart
your application.

The rest of this chapter walks you through techniques for optimizing your application for
the Web platform. This will not only demonstrate some features in the IBC templates, but
will also show you how much power you have when you finally do write your own code to
provide some “non-standard” functionality.

Continue on! You've only just skimmed the surface of Clarion Internet Connect, and
there’s a lot more!

140 Internet Application Guide

Faster is Better—Optimizing your Application

The Web introduces one additional programming challenge—bandwidth conservation. It
is important to utilize all the methods available to reduce the amount of data transmitted
over the network. Many users connect to the Web using a modem and telephone lines,
which is a relatively slow network connection.

Internet Connect is Designed to Conserve Bandwidth

Clarion Internet Connect was designed to conserve bandwidth. The Java controls it
creates most often update dynamically on the client browser without the need to refresh
the entire page. This form of “dynamic HTML" requires only a small amount of data to be
transmitted. This is known as a Partial Refresh. When a page is partially refreshed, only
the controls which are enabled to accept updated data redisplay. Entry Controls, Java
String controls, Java Image controls, and Java Listboxes are usually enabled to update
dynamically.

For the same reason (bandwidth conservation) many controls trigger a Partial Refresh.
For example, selecting a new record in a listbox triggers a Partial Refresh, allowing most
controls to redisplay current data.

Partial Refresh versus Full Refresh

There are some instances, however, where a Partial Refresh is appropriate but is not the
default. Changing events to trigger a Partial Refresh instead of a Full Refresh, where
appropriate, is one of the best ways to optimize your Web applications.

There are many cases when a Partial Refresh is appropriate but a Full Refresh is the
default. This is because the templates cannot anticipate every possibility and must favor
the safer Full Refresh instead of the faster Partial Refresh.

For example, a multi-sorted list which has no additional controls populated on the Tabs
performs better if you use Individual Control Overrides to specify a Partial Refresh when
a new tab is selected. This will only change the data in the listbox instead of replacing the
entire page.

Let's look at the application we just created.

1. Task-switch back to your browser.

2. CLICK on the restart hyperlink.

The WebOrder application appears inside the browser.

3. CLICK on the Browse Customer Information File hyperlink.

TUTORIAL — Making a Web Application 141

The Browse the Customer File “window” appears in the browser. Notice that the
window contains a listbox and two tabs. Clicking on a tab changes the sort order
of the list.

CLICK on each of the tabs and notice the behavior of the Web page.

You should have noticed that the entire page was replaced to redisplay the list.
This is the default behavior of sheets and tabs. In the next section we will
override this default behavior.

CLICK on the blue X button at the right end of the toolbar to close the Browse
window, then click on the Exit hyperlink to exit the application.

Leave your browser open with the restart page displayed. You will use this to
restart your application after making some changes.

Internet Procedure Extension Template

In this section, we will override the SHEET control’s default action to optimize it for
performance over the Web.

Starting Point:
You should have the weborder.app open in the Clarion development environment .

1.

6.

7.

In the Application Tree, select the Category tab.

This sorts the procedures by category. Notice there are seven procedures within
the Browse category.

Highlight the BrowseCustomer procedure, then press the Properties button.
This opens the Procedure properties window.

Press the Internet Options button.

Select the Controls Tab.

Highlight the Sheet control (?CurrentTab) in the Individual Control Options list.
Press the Properties button, then select the Events tab.

Highlight the Accepted event, then press the Properties button.

Override the Default Full Refresh with Partial Refresh

1.

Check the Override default action box, then select Partial page refresh from the
drop-down list.

142

Internet Application Guide

7t Individual Override for 2Cur

>
B8 WebOrder = x|
' Display | Html Events |Cl_asses| ak
v X| al Froce Cancel | DK |
Templ M ewS election I |
Progedure Dieger TabChanging nes
I_ Eat_eg Selected Help |
- @ B Pratoty
g Mo B
g E 7g Events x|
=l HirtZT ft.ﬂvenide detfault action
= chion on exent: Cancel
=y | _ Cooel |
= Fam| Help |
=
1 Updat
rP U
| —
2. Press the OK buttons on all the windows until you return to the application tree (4
times).
3. Repeat these steps for all other Browse procedures.
4. Choose Project * Make (or press the Make icon button on the toolbar).
Your Web application is ready to deploy once again.
5. Open Windows Explorer (or Windows NT Explorer).
6. Copy Weborder.exe from the C:\Clarion6\Examples\WebTutor directory to the

C:\CWICWEB\EXEC\WebTutor directory.
This time you need only deploy the application, the DLLs have not changed.

Let’s run the application to see how the changes we made affect its behavior.

TUTORIAL — Making a Web Application

143

See the difference

1.

2.

Task-switch back to your browser.

Start the application in the browser by clicking on the Restart hyperlink.
CLICK on the Browse Customer Information File hyperlink.

CLICK on each of the tabs and notice the behavior of the Web page.

You should notice that the list now re-displays data without sending an entire
page.

Exit the application.

Leave your browser open with the restart page displayed. You will use this to
restart your application after making some changes.

144 Internet Application Guide

Looks are Important—Adding Graphics

The Web has produced a colorful, enjoyable medium for computer users. Many Web
sites are designed to provide both content and an attractive interface. Clarion Internet
Connect has support for the most commonly used methods of employing graphics and
colors in Web pages.

In this section we will add a background image to the pages in which the application’s
windows appear. This provides a back-drop for the running program and helps to visually
indicate the portion that is the application and the portion that is not.

This section of the tutorial is not intended to teach you page design or artistic methods.
Ths section is designed to show you how to use the template interface to create the look-
and-feel you want.

Internet Application Extension Template

First, we will add a background image:

Starting Point:
You should have the weborder.app open in the Clarion development environment.

1. In the Application Tree, press the Global button. This opens the Global
Properties window.

2. Press the Extensions button.This opens the Extensions and Control Templates
window.

3. Highlight Internet Application Extension.

4, In the Page area, press the ellipsis (...) button next to Background Image. This

opens the standard Windows file dialog.
5. Select Crumpled.gif, then press the OK button..

This adds a tiled image to the Web page background. The image is of a
crumpled piece of grey paper. Keep in mind that this image file will need to be
deployed.

6. In the Window area, press the ellipsis (...) button next to Background Color.
This opens the standard Windows color dialog.

7. Select the Silver color, then press the OK button.

This adds a background color attribute to the HTML representation of the
application’s window. In addition to adding the color, this also prevents the
background image from showing through.

TUTORIAL — Making a Web Application 145

7% Extension and Control Templates B] 4|

Sl ntemet Application Extension ™" Show on Global Properties

window Igontrol | MDI |Adganced| El_assesl

—Page
[V Center window on page

Backaround calor: |EDLDH:NDNE J
Background image: IEHUMPLED.GIF J
— Window

Backaround color; I COLOR:Sikver

Background image: J
‘window border width: 2 =

—Help
[~ Enable help for internet applications

r Help idz are links within & baze document
UFEL of help documents:
Help wirdow stule

‘window Components. ..

A »

Insert | Delete |i| il
Help | [1]4 | Cancel | Apply |

8. Press the OK button on the Extensions and Control Templates and the Global
Properties window.

Make, Deploy, and Run the Application

1. Choose Project * Make (or press the Make icon button on the toolbar).
Your Web application is ready to deploy once again.
2. Open Windows Explorer (or Windows NT Explorer).

3. Copy Weborder.exe from the C:\Clarion6\Examples\WebTutor directory to the
C:\CWICWEB\EXEC\WebTutor directory.

4, Copy Crumpled.gif from the C:\Clarion6\Examples\WebTutor directory to the
C:\CWICWEB\Public directory.

5. Task-switch to your browser and restart the application. Notice the new look.

In this chapter we learned how to make a new application and make some basic changes
to optimize it for performance and appearance when running over the Web. In the next
chapter, we will Web-enable an existing application, so you can learn to publish any of
your applications on the Web.

146 Internet Application Guide

TUTORIAL — Web-Enabling an Existing Application 147

8 - Tutorial— Web-Enabling an Existing
Application

Porting an existing Clarion application to the Web is just as easy as creating a new Web
application.

In this chapter we will use WebTree.APP.

In this chapter, you will:

* Use the IBC templates to port an existing Clarion application to the Web.

+ Compile and deploy the application, then run it in a browser.

+ Learn about using Tree controls on the Web and deploying icons.

+ Optimize the Tree display using techniques similar to those used in the first

tutorial.

This should all take about fifteen minutes. By the end of this chapter, you'll have a
complete application for a simple order entry system using a different interface than the
application used in the first tutorial.

Let's get started!

148 Internet Application Guide

Using the Global Internet Application Extension
Template

Porting an Application to the Web

Starting Point:
You should have the Clarion development environment open.

This tutorial assumes that you installed Clarion in C:\Clarion6 and the Application broker
in C:\CWICWEB. If you used a different directory, you will have to modify the instructions
accordingly.

Web-enabling a Clarion application

1. From the Pick dialog, press the Open... button. This opens the Open dialog.

2. Select the Application tab.

3. Select the C:\Clarion6\Examples\WebTutor directory from the Directories list,
select WebTree.app, then press the Open button. This opens the Application
Tree dialog.

4, In the Application Tree, press the Global icon button. This opens the Global

Properties window.

5. Press the Extensions button. This opens the Extensions and Control Templates
window.

6. Press the Insert button.

7. Highlight Internet Application Extension, then press the Select button.

This adds the Internet Application Extension template which automatically adds
the Internet Procedure Extension template to each procedure in the application.

8. Press the OK button on the Extensions and Control Templates and the Global
Properties windows.

That's all it takes to Web-enable an existing application!

Make and Deploy

1. Choose Project * Make (or press the Make icon button on the toolbar).
Your Web application is ready to deploy.

2. Press the OK button on the compile results window.

TUTORIAL — Web-Enabling an Existing Application 149

3. Open Windows Explorer (or Windows NT Explorer).

4, Copy WebTree.exe from the C:\Clarion6\Examples\WebTutor directory to the
C:\CWICWEB\EXEC\WebTutor directory.

5. Copy all the icon files (*.ICO) from the C:\Clarion6\Examples\WebTutor directory
to the C:\CWICWEB\Public directory.

These icons are used on the Toolbar buttons and in the Tree control. They must
be deployed to the \PUBLIC directory in order for the browser to display them.
The icons in the Standard toolbar which the earlier tutorial application used are
compiled into the Java classes and need not be deployed.

Run the application

1. Start the Application Broker by double-clicking on C60APS10.exe (or
C60APS.exe if you have the full version of the Application Broker) in the
C:\CWICWEB\ directory.

As in the first tutorial, we will use the executable version of the Application Broker. The
ISAPI version works in a similar manner, with a only few differences. These are
discussed in the Application Broker chapter.

2. Start your browser.

3. Next, start the WebTree.exe application in the browser.
(http://localhost/exec/webtutor/webtree.exe.0)

Examine the application

You should naotice that this application looks a little different than the previous application.
It uses a toolbar but no menu. This is a common interface in Web applications, so this
technique bears demonstration here.

1. CLICK on the Orders button.

The Browse Customer Orders “window” appears in the browser. Notice that the
window contains a Tree control and two buttons to Expand All and Contract All.

2. CLICK on the Expand All and Contract All buttons and notice the behavior.

Notice that expanding and contracting the tree refreshes the entire page. We will
use the same partial refresh technique you learned in the first tutorial to optimize
this behavior.

3. Exit the application (by pressing the blue X).

150

Internet Application Guide

Leave your browser open with the restart page displayed. You will use this to restart your
application after making some changes.

Overriding the default action

In this section, we will override the BUTTON control's default action to optimize it for
performance over the Web.

Starting Point:
You should have the WebTree.APP open in the Clarion development environment.

1.

10.

11.

12.

13.

Highlight the BrowseCustomer procedure, then press the Properties icon button.
This opens the Procedure properties window.

Press the Internet Options button.

Select the Controls Tab.

Highlight the Button control (?Expand) in the Individual Control Options list.
Press the Properties button, then select the Events tab.

Highlight the Accepted event, then press the Properties button.

Check the Override default action box, then select Partial page refresh from the
drop-down list.

Press the OK buttons on the Events and Individual Overrides windows.
Highlight the Button control (?Contract) in the Individual Control Options list.
Press the Properties button, then select the Events tab.

Highlight the Accepted event, then press the Properties button.

Check the Override default action box, then select Partial page refresh from the
drop-down list.

Press the OK buttons on all the windows until you return to the application tree (4
times).

Make and Deploy

1.

Choose Project » Make (or press the Make icon button on the toolbar).
Your Web application is ready to deploy once again.

Press the OK button on the compiler window.

TUTORIAL — Web-Enabling an Existing Application 151

3. Open Windows Explorer (or Windows NT Explorer).

4, Copy Webtree.exe from the C:\Clarion6\Examples\WebTutor directory to the
C:\CWICWEB\EXEC\WebTutor directory.

This time you need only deploy the application, the icons have not changed.
Let's run the application to see how the changes we made affect its behavior.

See the difference

1. Task-switch back to your browser.

2. Start the application in the browser by clicking on the Restart hyperlink.

3. CLICK on the Orders button again.

4, CLICK on the Expand All and Contract All buttons and notice the behavior now.

You should notice that the tree now re-displays the Tree data without sending an
entire page.

152

Internet Application Guide

; Browse Customer Orders - Microsoft Interne

=10l x|

File Edit Wiew Fawvorites Tools Help

Back - = - (D i | ‘Dhsearch []Favorites dfMedia @| »

address Links *

&] http:jbob-fjD3s0013/w1 ¥ | P Go

MNorkon Antivirus E' -

F

Expand All Contract All

Customer Orders
= [T Forestry Froducts (00217
1 [F] Order DO (242095)
) Copper Tubing 172 * per Ft (48 @ 0.26) $12 .48
& solvent (vineral Spifts) § Gal. (1 @ 33.49) $33.40
& Miood Filler (Clear) 2iCaze (2 @ 23997 271092
) solvent (Mineral Spifts) 1 Gal (1 @ 12.66) $12.66
B Solvent (foetone) 1 Gal 12/Casze (1 @ 86 78) F26.78
& solvent (vineral Spifts) § Gal. (1 @ 33.49) $33.40
) PT Fipe 3" (ivhite) per Ft 01 @ 12128121
[[E] Order 003 (2430095 7
[+ [Order 00 (203195 7
-7 Alied Sign, Inc. (00017
(-7 Bamett hManagement Partners (00027
— 7 Camier Tire Corp. (D007
— [T Castle & Harte, Corp. (0004
— 7 Doguond Realtty (0003
— [Fast Pprnting, Inc. (OO167
— 7 Gray's Hardware, Inc. (0012
— 7 Great Ferry Partners (00100
— [Hallhouse of Broward (00190
— [Haywood Adto Sales, Ine. (00037
—Idensen Gifts (00157

i | |

4

|E Done

I_ I_ I_ ioE Local inkranet

5. Exit the application.

Congratulations! You are well on your way to developing Web applications. In the next
chapter, we will discuss some advanced options you have at your disposal with Internet

Connect.

TUTORIAL — Advanced Web Programming Techniques 153

9 - Tutorial— Advanced Web Programming
Techniques

Now that you have learned how to create a Web application and how to port an existing
Clarion application to the Web, you have all the skills you need to publish database
applications on the Internet.

But, there is more you can do with Internet Connect. This chapter will show you some of
the advanced techniques you can use in your Web Applications.

For the rest of the tutorial, we will continue to use the WebTree example that you used in
the previous chapter.

In this chapter, you will:

+ Add a Login window and use Cookies to “remember” a user’s login name the
next time the app is started.

+ Use a Code Template to Embed Static HTML.

* Use a Code Template to Embed Dynamic HTML using a variable.

* Use an Internet Embed point to write conditional HTML Code.

* Password protect a procedure.

* Add a Web Splash window to inform first time users that the Java Support Library
is downloading.

* Use Embedded HTML to align an Image on the Web.

* Use Individual Control Options to ensure embedded source code is executed
over the web.

* Use embedded source code to restrict Edit-In-Place when running over the web.

This should all take about thirty minutes. By the end of this chapter, you'll learn most
of the methods available to customize of your Web applications.

Let's continue!

154

Internet Application Guide

Using Cookies

In this section, we will add a login window to allow users to identify themselves. The
application will use cookies to store that name and “remember” the login name. The next
time the user starts the application, the prompt will not appear.

Starting Point:
You should have the WebTree.app open in the Clarion development environment.

This tutorial assumes that you installed Clarion in C:\Clarion6 and the Application broker
in C:\CWICWEB. If you used a different directory, you will have to modify the instructions
accordingly.

Add alogin procedure

1.

In the Application Tree, highlight the Main procedure, then press the Properties
icon button. This opens the Procedure Properties window.

Press the Embeds button. This opens the Embedded Source window.
Highlight the embed point as shown below:

=~ _| Local Objects
-1 Abe Objects
=8 | ‘Window b anager Mindovikd anager)
+ -] Aszk PROCEDUREMIRTLAL
-] Changeaction PROCEDURE.EYTEMIRTUAL
-_| Deletedction PROCEDURE.BYTEMIRTLAL
-] Init PROCEDURE(.EYTEMIRTUAL
] DATA
-.#] CODE
> [E g Enter procedure scope
> B Snap-shot GlobalRequest

e e

This point ensures that the LoginWindow is called before the window opens.
Press the Insert button. This opens the Select Embed Type window.
Highlight Call a Procedure, then press the Select button.

In the Procedure to call field, type LoginWindow, then press the OK button.

Press the Close button on the Embedded Source window and the OK button on
the Procedure Properties window.

This adds the LoginWindow procedure as a ToDo item.

TUTORIAL — Advanced Web Programming Techniques 155

Add the login window

1. In the Application Tree, highlight the LoginWindow procedure, then press the
Properties button. This opens the Select Procedure Type window.

2. On the Templates tab, highlight the Window-Generic Window Handler, then
press the Select button. This opens the Procedure Properties window.

3. Press the Window button. This opens the New Structure window.

4, Highlight Simple Window, then press the OK button. This opens the Window
Formatter.

Design the login window

1. Select Populate » Column. This opens the Select Column dialog.

2. In the Tables list on the left, highlight Global Data, then in the Columns list on
the right, select LoginName, then press the Select button.

This variable was created for you in the example application.

3. CLICK on the window to populate the Prompt and Entry control.

4, Select Populate ¥ Control Template. This opens the Select Control Template
window.

5. Highlight CancelButton then press the Select button.

6. CLICK on the window to populate the Cancel button control.

7. Select Populate * Control Template. This opens the Select Control Template
window.

8. Highlight CloseButton then press the Select button.

9. CLICK on the window to populate the Close button control.

10. Change the text of the the Close button control to OK.

156

Internet Application Guide

11.

Login Name: |

Cancel | 0K |

Reposition the controls on the window as you see fit.

Add the “Cookie” code to save the LoginName

1.

DOUBLE-CLICK on the OK button control to access the Embedded Source
points for the control.

Highlight the Control Events, ?Close, Accepted, Genertated Code embed point
then press the Insert button. This inserts the code after any generated code for
the control.

Select the SetCookie code template then press the Select button.

1 FrintCrystalRepart - Print Crystal Beport ;I
=i~ _] Clazz Intemet - Internet Deployment Templates «1.5

— AddServerlProperty - A4dd or change a HT TP header field

> —] GetCookie - Read the value of a cookie

1 GetServerProperty - Read the value of a HTTF header figld

s kS ctCookic - Head the value of a cookie

=1 Clazz Skeletons - Genernc Skeleton Templates.
L MergeSkeletonDocument - Code to Merge a Skeleton with Data

In the Cookie name field, type LoginName.

In the New Value field, type LoginName (or select the LoginName global variable
from the File schematic using the ellipsis button).

Press the OK button.

Press the Close button on the Embedded Source window.

TUTORIAL — Advanced Web Programming Techniques 157

Add the “Cookie” code to get the LoginName

1. DOUBLE-CLICK on the window to access the Embedded Source points for the
window.
2. Highlight the embed point as shown below then press the Insert button.

+~ =] Control Events
=~ =] Local Objects
=] Abc Objects
- =| “Window b anager Pafindovibd anager)
2@ TakeEvent PROCEDURE(EYTE WIRTUAL
~-# CODE
> EE SOURCE [Nnsert code here)
B Top of CYCLE/BREAK. support
>|:| Parent Call
B Bottom of CYCLE/BREAK, support

3. Highlight Source then press the Select button.
4. Type in the source code below:

CASE EVENTQ)

OF Event:NewPage INew Page is requested
LoginName = Broker.Http.GetCookie("LoginName®) !get login cookie
DISPLAY Irefresh

OF EVENT:CloseWindow
RETURN PARENT.TakeEvent() Iprocess the close event

END

IF LoginName 11T cookie exists
POST(Event:CloseWindow) Iclose this page

END

This code “gets” a cookie when the window is active. If it sucessfully retrieves a
cookie and sets the LoginName variable, it closes the window (before the user
sees it). This means a user only needs to login once, then the server
“recognizes” the user the next time around.

5. Exit the Source editor and save the changes.
6. Press the Close button on the Embedded Source window.
7. Exit the Window Formatter and save the changes.

8. Press the OK button on the Procedure Properties window.

158

Internet Application Guide

Make and Deploy

1. Choose Project * Make (or press the Make icon button on the toolbar). Your
Web application is ready to deploy.

2. Press the OK button on the compiler window.
3. Open Windows Explorer (or Windows NT Explorer).
4, Copy WebTree.exe from the C:\Clarion6\Examples\WebTutor directory to the

C:\CWICWEB\EXEC\WebTutor directory.

Run the application

1. Start the Application Broker by DOUBLE-CLICKing on C60APS10.exe (or
C60APS.exe if you have the full version of the Application Broker) in the
C:\CWICWEB\ directory.

2. Start your browser.

3. Start the WebTree application in the browser

(http://localhost/exec/webtutor/webtree.exe.0).

Examine the application

The first time you run the application. You are prompted to provide a login name. The
next time you run it, you are not prompted, because the system reads your cookie and
the value of the global variable is set to the value in the cookie.

1. Type in a name when the Login screen appears then press OK .
TR UORTPPPPR Exit the application
3. Restart the WebTree application in the browser. Notice that the second time, you

are not prompted to log in.
4, Exit the application

Leave your browser open with the restart page displayed. You will use this to restart your
application after making some changes.

Let's make another change to the application to display the user’'s LoginName using the
Dynamic HTML code template.

TUTORIAL — Advanced Web Programming Techniques 159

Embedding HTML

One of the most powerful features of the Internet Developer's Kit is the ability to embed
HTML code in the HTML pages which are output by the Web-enabled application.

When you embed HTML code (using the special embed points added by the Global
Internet Application Extension template), it is inserted at the specified location in the
HTML returned to the browser which executed the application.

Starting Point:
You should have the Clarion development environment open and open the
WebTree.app application.

Adding Dynamic HTML using a variable

We have written the code needed to set and retrieve a user’s login name and store it in a
global variable. Now we will display that name on the Web page below the HTML
representation of the window.

1. In the Application Tree, highlight the Main procedure, then press the Properties
icon button. This opens the Procedure Properties window.

2. Press the Embeds button.

This opens the Embedded Source window.

3. Highlight the Internet-Before the Closing </BODY> tag embed point, then press
the Insert button. This opens the Select Embed Type window.

4, In the code template section, highlight Dynamic HTML, then press the Select
button.

5. In the Dynamic Text field, type the following:

“<<P>” & CLIP(LoginName) & “ is logged in <</P>~
6. Press the OK button on the code template window.

7. Press the Close button on the Embedded Source window and the OK button on
the Procedure Properties window.

160

Internet Application Guide

Make and Deploy

1.

Choose Project * Make (or press the Make icon button on the toolbar).
Your Web application is ready to deploy.

Press the OK button on the compiler window.

Open Windows Explorer (or Windows NT Explorer).

Copy WebTree.exe from the C:\Clarion6\Examples\WebTutor directory to the
C:\CWICWEB\EXEC\WebTutor directory.

Examine the application

1.

Restart the WebTree application in the browser (click on the Restart hyperlink).

If you have already run the application on this machine, you will not be prompted
to Log In. Instead, the server reads your “cookie” and sets the LoginName global
variable to that value. The LoginName variable now displays on the Web page
below the toolbar buttons.

Exit the application.

Leave your browser open with the restart page displayed. You will use this to
restart your application after making some changes.

Let's make some more changes to the application using Embedded HTML.

Adding Static HTML

In the last section, we added HTML code that was constructed using a combination of
text and variables. In this section we will use the Static HTML code template to add
HTML code that will remain static.

We will use this to add a link at the bottom of the page that will allow users to Email the
Webmaster with comments or questions about the application.

1.

In the Application Tree, highlight the Main procedure, then press the Properties
button. This opens the Procedure Properties window.

Press the Embeds button.This opens the Embedded Source window.

Highlight the Internet-Before the Closing </BODY> tag embed point and press
the Insert button.

This opens the Select Embed Type window.

TUTORIAL — Advanced Web Programming Techniques 161

Highlight Static HTML, then press the Select button.

In the HTML to Insert box, type the following:

<P>Comments?</P>
Press the OK button on the code template window.

Press the Close button on the Embedded Source window and the OK button on
the Procedure Properties window.

Make and Deploy

1.

Choose Project * Make (or press the Make icon button on the toolbar).
Your Web application is ready to deploy.

Press the OK button on the compiler window.

Open Windows Explorer (or Windows NT Explorer).

Copy WebTree.exe from the C:\Clarion6\Examples\WebTutor directory to the
C:\CWICWEB\EXEC\WebTutor directory.

Examine the application

1.

Restart the WebTree application in the browser (click on the Restart hyperlink).

You will notice the new link. If you click on the link, your browser opens your
Email client with a new preaddressed message.

Exit the application.

Leave your browser open with the restart page displayed. You will use this to
restart your application after making some changes.

Adding conditional HTML in Clarion Source Code

A third method of inserting embedded HTML into your Web pages is by using the
Target.WriteLn method in embedded source code. This allows you to use Clarion code
to write the HTML code. One benefit of using Clarion code is the ability to control the
HTML code you want to write. In other words, you can utilize the logical structures in the
Clarion language to control what is written. You can write one line or another using an
IF..THEN..ELSE clause, or a CASE structure.

We will use this technique to display a random advertisement on the bottom of the page
using an EXECUTE structure.

162 Internet Application Guide
1. In the Application Tree, highlight the Main procedure, then press the Properties
icon button. This opens the Procedure Properties window.
2. Press the Embeds button. This opens the Embedded Source window.
3. Highlight the Internet-Before the Closing </BODY> tag embed point then press
the Insert button. This opens the Select Embed Type window.
4, Highlight Source, then press the Select button.
5. In the Embedded Source editor, type the following source code:
Strl" = "<<A HREF="http://www."
Str2" = ".com"><<IMG SRC=""
Str3" = "' BORDER=0><"

EXECUTE RANDOM(1,5)

Target.WriteLn(CLIP(Strl1") &°

Target.WriteLn(CLIP(Strl1l™) &
Target.WriteLn(CLIP(Strl™) &
Target.WriteLn(CLIP(Str1™) &
Target.WriteLn(CLIP(Strl1l"™) &

END

softvelocity"& CLIP(Str2"™) & SELF.Files.GetAlias("1.GIF") & Str3™)
“icetips” & CLIP(Str2") & SELF.Files.GetAlias("2.GIF") & Str3™)
“finatics™ & CLIP(Str2™) & SELF.Files.GetAlias("3.GIF") & Str3™)

“flpanthers® & CLIP(Str2") & SELF.Files.GetAlias("4.GIF") & Str3")
“flamarlins® & CLIP(Str2") & SELF.Files.GetAlias("5.GIF") & Str3™)

You can copy and paste this text from chap4.txt in the \webtutor directory.

6. Exit the Source editor and save the changes.

7. Press the Close button on the Embedded Source window and the OK button on
the Procedure Properties window.

Make and Deploy

1. Choose Project * Make (or press the Make icon button on the toolbar).

Your Web application is ready to deploy.

2. Press the OK button on the compiler window.
3. Open Windows Explorer (or Windows NT Explorer).
4, Copy WebTree.exe from the C:\Clarion6\Examples\WebTutor directory to the

C:\CWICWEB\EXEC\WebTutor directory.

5. Copy the GIF files (*.gif) from the C:\Clarion6\Examples\WebTutor directory to
the C:\CWICWEB\Public directory.

TUTORIAL — Advanced Web Programming Techniques 163

Examine the application

1.

Restart the WebTree application in the browser (click on the Restart hyperlink).

You will notice the new image and link. Each time you start the application, a
random ad appears.

Exit the application.

Leave your browser open with the restart page displayed. You will use this to
restart your application after making some changes.

164

Internet Application Guide

Covering the Download with a Splash Window

In order for a browser to “run” a Web-enabled application, the Java Support Library (JSL)
must be available to the client browser. First-time users must download either
Clarion.CAB (for Microsoft Internet Explorer) or Clarion.ZIP (for Netscape). In most
browsers, the JSL is only downloaded once and remains cached (until the user clears
that cache). Although the JSL is very compact for the degree of functionality it provides, it
can still take several minutes to download over a 28.8 modem. With that in mind, we will
use a “splash screen” window to alert first-time users that the download is in progress. By
placing a Java Button on that window, we can prevent users from continuing until the JSL
is downloaded and the Java button is initialized.

Starting Point:
You should have the Clarion development environment open and open the
WebTree.app application.

1.

In the Application Tree, highlight the Main procedure, then press the Properties
icon button. This opens the Procedure Properties window.

Press the Embeds button. This opens the Embedded Source window.
Highlight the embed point as shown below:

== Local Objects
== AhcObjects
= =| ‘“Window Manager Mwindovibd anager)
—=| Init FROCEDURE[L.BYTEMIRTUAL
S8R CODE

El Enter procedurs scope
>|§| FROCEDURE Loginiafindow
El Snap-shot GlobalRequest
> El Parent Call

Press the Insert button. This opens the Select Embed Type window.
Highlight Source, then press the Select button.

In the Embedded Source editor, type the following source code:

IF WebServer.Active THEN Splash.

This makes sure that the Splash procedure is only called when the application is
running over the Web.

TUTORIAL —

Advanced Web Programming Techniques 165

9.

10.

Make sure this embed is listed before the call to the LoginWindow procedure
using the up or down button.

=~ =| Local Objectz
=] Abe Objects
=8 =] ‘Window kanager Mindovibd anager]
—!| Init PROCEDURE[.BYTEMIRTLAL
=8 COoDE
[E§ Erter procedure scope
> &] SOURCE [IF “WebServer.Active THEN Splash. [Call the Splash window)

This ensures that the Splash procedure is called before any other window opens.
Press the Close button on the Embedded Source window.
Press the Procedures button. This opens the Called Procedures window.

Highlight Splash, then press the OK button.

This connects the Splash procedure to the Main procedure in the Application Tree. This
is necessary if your application is using Local MAPs.

Changing the BUTTON to a Java Button

The Splash window contains some text, a button, and an IMAGE control. The BUTTON
was populated as a CloseButton control template with the text changed to Continue.
Since the button is created as an HTML button by default, you will specify otherwise. We
want it to be a Java button so that it will not be available to the end user until the JSL has

downloaded.

1. In the Application Tree, highlight the Splash procedure, then press the
Properties icon button.

2. Press the Internet Options button.

3. Select the Controls tab.

4. Highlight ?Close in the Individual Control Options list, then press the
Properties button.

5. Select the Classes tab.

6. Check the Override default Class box, then select the WebJavaButtonClass

from the Class Name drop-down list.

166

Internet Application Guide

s Individual Override for 2Close

Dizplay | Heml | Events Classes |

i

Clazzes Cancel
¥ Owenide default class

Class Mame: |'weblavaButtonClass [=] el
Header file:] J —=F

Implernentatiarn file;

-

Press the OK button. Leave the Internet Options window open. We will use it in
the next section.

Centering the Image on the Splash window

The Splash window’s IMAGE control is positioned so that is is centered horizontally in the
window. This portion of the tutorial will add some HTML code to ensure that the IMAGE
remains centered when running over the Web.

1.

Highlight ?Imagel in the Individual Control Overrides list, then press the
Properties button.

Select the HTML tab.

This window allows you to enter HTML code before and after a control. This
HTML code only affects the control when running over the Web.

In the HTML before control box, type:

.. <CENTER>

In the HTML after control box, type:

</CENTER>

Press the OK buttons on all the windows until you return to the Application Tree
(3 times).

Make and Deploy

1.

Choose Project * Make (or press the Make icon button on the toolbar).
Your Web application is ready to deploy.
Press the OK button on the compiler window.

Open Windows Explorer (or Windows NT Explorer).

TUTORIAL — Advanced Web Programming Techniques 167

4, Copy WebTree.exe from the C:\Clarion6\Examples\WebTutor directory to the
C:\CWICWEB\EXEC\WebTutor directory.

Examine the application

1. Restart the WebTree application in the browser (click on the Restart hyperlink).
You will notice the Splash window now appears before any other window.

2. Exit the application.

Leave your browser open with the restart page displayed. You will use this to
restart your application after making some changes.

168 Internet Application Guide

Using Partial Refresh to Update Controls

In Windows applications, programmers often embed code to update one control when the
value of another control changes. For example, you might embed code to change the
total of a line item when the quantity of items changes. The Webtree application has code
like this in the Updateltems procedure. The embedded code is tied to the
EVENT:Accepted on each control. In other words, when the user changes the value in a
control and tabs off it or selects another control with a mouse click, the code is executed.

When an application runs over the Web, ENTRY controls are processed on the browser
by default. In other words, there is no interaction between the browser and the server
application—unless you change the event handling options for that control. In this
section, you will change the action for three controls to ensure that embedded code is
executed on the server for an Event;Accepted for these controls.

1. In the Application Tree, highlight the Updateltems procedure, then press the
Properties icon button. This opens the Procedure Properties window.

2. Press the Internet Options button.

3. Select the Controls tab.

4, Highlight ?ITEM:ProdCode in the Individual Control Options list, then press the
Properties button.

5. Select the Events tab.

6. Highlight Accepted, then press the Properties button.

7. Check the Override default action box, then select the Partial page refresh from

the Action on Event drop-down list.

8. Press the OK buttons on all the windows until you return to the Internet Options
window (twice).

9. Repeat the last 5 steps for ?ITEM:Quantity and ?ITEM:Price.

10. Press the OK buttons on all the windows until you return to the Application Tree
(twice).

TUTORIAL — Advanced Web Programming Techniques 169

Make and Deploy

1.

Choose Project * Make (or press the Make icon button on the toolbar).
Your Web application is ready to deploy.

Press the OK button on the compile results window.

Open Windows Explorer (or Windows NT Explorer).

Copy WebTree.exe from the C:\Clarion6\Examples\WebTutor directory to the
C:\CWICWEB\EXEC\WebTutor directory.

Examine the application

1.

2.

7.

Restart the WebTree application in the browser (click on the Restart hyperlink).
Press the Orders button.

Press the Expand All button.

Highlight one of the line itens (the green lines).

Press the Change button

Change the amount in the Quantity Field, then press TAB.

Notice the Extended Total changes. If you change the Price field or Product
Code, the Extended Total also changes.

Exit the application.

Leave your browser open with the restart page displayed. You will use this to restart your
application after making some changes.

170 Internet Application Guide

Restricting Access to a Procedure

For the next part of the tutorial we will restrict access to a procedure using the browser’'s
built-in authentication support and the Internet Procedure Extension template’s password
protection capabilities. When a password protected procedure is called, the browser's
authentication window displays. You do not need to create a window to collect login
information. Password protection is based on an area, a username and a password. The
“area” is the protected procedure.

The browser prompts the user for a user name, and a password. These are then sent to
the program for validation. If the program accepts the password (i.e., it RETURNs TRUE
from the Webwindow.Val idatePassword method), the new page is displayed, otherwise
the browser prompts again. After three attempts the browser displays a message
informing the user that access is denied. This page automatically returns the user to the
last active place in the program after a few seconds.

If the page has already been visited in the current session the browser will normally
supply the user name and the password without prompting the user. This feature is built-
in to most browsers.

There are a few methods of password protection (see Using Passwords in the Web
Application Design Considerations chapter). We will use the more advanced method—to
override the WebWindow.Val idatePassword method.

Starting Point:
You should have the Clarion development environment open and open the
WebTree.app application.

Password Protection

To implement password protection that is validated against a data file, you must add the
validation file to the file schematic, add the password challenge in the Procedure
Extension template, and override the WebWindow.Val idatePassword method with your
validation code.

Add the Validation File

1. In the Application Tree, highlight the UpdateProduct procedure, then press the
Properties icon button. This opens the Procedure Properties window.

2. Press the Tables button. This opens the Table Schematic Definition window.

3. Highlight the Other Files, then press the Insert button. This opens the Select File

window.

TUTORIAL — Advanced Web Programming Techniques

171

4,

5.

Highlight Userlist, then press the Select button.

Press the OK button on the Table Schematic Definition window.

Add the Password Challenge

1.
2.

Press the Internet Options button.
Select the Advanced Tab.

Check the Restrict access to this procedure box.

75 Internet Options...

window I Controls | WDl Advanced |

r— Formatting Cancel
[T Overide global settings

o i

HTML sealing - Fizels Per Character
Hurizontal: [- Help
Y ertical 13 33-
[elta far arid snapping: |2 jl |2 il
— Security

™ Transfer cver a secure connection

[Heshict access to thiz procedure

Owerride the pazsword walidation - or uze the following
Password: I J
[Case sensitive

—window refresh
[Shaw progress window
Tiime between efresh: 2
Action on timer: Partial page refresh =]
[Enable window refresh on timer
Time between refresh 10
Action on timer: Partial page refrash ;‘“I

Press the OK button.
Press the Embeds button. This opens the Embedded Source window.

Highlight the Internet- Password Validation Code Section embed point then press
the Insert button. This opens the Select Embed Type window.

By entering code into the Internet- Password Validation Code Section embed
point you are overriding the default method for password validation.

172

Internet Application Guide

9.

10.

This embed point generates inside a method with two parameters: UserName
and Password, which it receives from the browser. The method should return
TRUE if the password is valid, and FALSE if it is not valid. This allows you to look
up the information in a file, or use any other method you choose to validate the
password.

Highlight Source, then press the Select button.

In the Embedded Source editor type the following source code:

USE:UserID = UserName

IF Access:UserList._Fetch(USE:KeyUserlID) !lookup UserName in Ffile
RETURN(False)

END

IF USE:UserPassword = Password ICheck the password
RETURN(True)

ELSE

RETURN(False)

END
Exit the Source editor and save the changes.

Press the Close button on the Embedded Source window and the OK button on
the Procedure Properties window.

Make and Deploy

1.

Choose Project * Make (or press the Make icon button on the toolbar).
Your Web application is ready to deploy.

Press the OK button on the compile results window.

Open Windows Explorer (or Windows NT Explorer).

Copy WebTree.exe from the C:\Clarion6\Examples\WebTutor directory to the
C:\CWICWEB\EXEC\WebTutor directory.

TUTORIAL — Advanced Web Programming Techniques 173

Examine the application

1. Restart the WebTree application in the browser (CLICK on the Restart link).
2. Press the Products button.
3. Press the Insert button to add a new product.

The Browser's authentication window appears.
4, In the UserName field, type Fred.
5. In the Password field, type Wilma.

The values you entered are in the Userlist file. This file was precreated with two
users. Note that there is no procedure in this application to edit this file. This is a
common method of handling user password files where only a system
administrator has permission to add users. Feel free to create procedures to
update this file as you see fit.

6. Exit the application.

174 Internet Application Guide

Restricting Edit-In-Place

The ABC Templates in Clarion allow you to enable Edit-In-Place with a single checkbox.
This feature, however, is not supported when running over the Web. Over the Web, you
must have a separate Form for updates. There is a simple method to alternate between
edit-in-place when running locally in Windows and calling a form when running over the
Web.

If you enable Edit-In-Place and specify an update procedure with the BrowseBox control
template, you have two-thirds of your work done. The template generated code either
calls a separate update procedure or does edit-in-place depending on the value of the
BRWn .AskProcedure property. Set the BRWn.AskProcedure property to 0 (zero) and you
have Edit-in-Place; Set it to 1 (One) and you call the update procedure.

To use Edit-in-place for local Windows and a form when running over the Web:
1. Select the BrowseProduct procedure, then press the Properties icon button.

2. In the UpdateButton section of the Procedure Properties window, check the Use
Edit in Place box.

Notice that an update procedure is already specified. Make sure to leave that
procedure named.

Next, embed the code to set the update action to call Edit-in-Place when running
in Windows and call the form when running over the Web.

3. Press the Embeds button.
This opens the Embedded Source window.
4, Highlight the embed point as shown below then press the Insert button.

=i~ =| Local Objectz
=) Abe Objects
=8 =] ‘Window kanager Mindowbd anager]
—5| Init PROCEDURE[.BYTEMIRTLIAL
~-# CODE
|:| Enter pro

cedure scope

5. Highlight Source, then press the Select button.

TUTORIAL — Advanced Web Programming Techniques 175

In the Embedded Source editor, type the following source code:
IF WebServer._Active

BRW1:AskProcedure = 1
END

Exit the Source editor and save the changes.

Press the Close button on the Embedded Source window and the OK button on
the Procedure Properties window.

Make and Deploy

1.

Choose Project * Make (or press the Make icon button on the toolbar).
Your Web application is ready to deploy.

Press the OK button on the compile results window.

Open Windows Explorer (or Windows NT Explorer).

Copy WebTree.exe from the C:\Clarion6\Examples\WebTutor directory to the
C:\CWICWEB\EXEC\WebTutor directory.

Examine the application

1.
2.
3.

© N o U0

9.

Restart the WebTree application in the browser (click on the Restart hyperlink).
Press the Products button.

Press the Insert button to add a new product. The Browser’s authentication
window appears.

In the UserName field, type Fred. In the Password field, type Wilma. Notice that
the Update Products form appears.

Exit the application.
Run the application under Windows.
Press the Products button.

Press the Insert button to add a new product. Notice that Edit-In-Place is now
active.

Exit the application.

Congratulations! You have sucessfully completed the tutorial portion of this manual. You
should have enough experience now to create robust Web database applications.

The rest of the book explains the IBC Templates, the IBC Library, and application design
tips and techniques. Read on.

176 Internet Application Guide

The Internet Builder Class Templates 177

10 - The Internet Builder Class Templates

This chapter covers the Internet Builder Class (IBC) Templates in the Internet
Developer’s Kit. These templates are designed to work with both of the template chains
included in Clarion (ABC and Clarion). For the most part, the IBC Templates work in the
same manner when used with either template chain. The differences are noted in the
section where those differences appear.

The IBC Templates are made up of a single Global Application extension template, a
procedure template, and several code templates.

The Global Internet Application Extension template automatically adds the Procedure
extension template to every procedure in the application. This allows you to Web-enable
an entire application in a single step.

The combination of global and procedure level settings provides customization
capabilities at either level. To make a setting application-wide, you set a Global option.
To specify an option for a single procedure, you make the setting for that procedure.
Many of the Global and Procedure settings are the same; the only difference is the scope
of the setting.

The Global Internet Application Extension Template

The Global Internet Application Extension Web-enables a Clarion application. It adds the
functionality of generating dynamic HTML when the application is accessed through the
Application Broker. This template allows you to specify the options to use when
generating an HTML representation of your windows and reports.

In addition, it automatically adds the Internet Procedure Extension to every procedure in
your application and any procedures subsequently added to the application. The
Procedure extension allows you to override many of the global options for a specific
procedure.

This template allows you to customize the appearance and behavior of your application
when it is executed over the Web. The settings you specify here are global in nature; that
is, they affect every procedure in your application.

You can override most of these settings on a procedure level using the Internet
Procedure Extension’s settings. In addition, some options can be specified on a control-
by-control basis. The combination of these three levels of customization provides you
with complete flexibility of design.

178 Internet Application Guide

None of these settings affect your application when running locally as a Windows
executable.

Page Settings

When run over the Web, an application’s current window is displayed inside an HTML
page (a Web page). The page settings allow you to specify a background color or
background image for the HTML page. The template generated code calls the
WebWindow.SetPageBackground method to set these properties.

Center Window on Page
Check this box to center the HTML representation of your window inside the Web page.
This adds <CENTER></CENTER> HTML tags to the Web page.

Background color

You can specify the color to use for the Web page. Specify a Color, a color equate, or
select a color from the COLORDIALOG by pressing the ellipsis (...) button. The default is
no color (the equate is COLOR:NONE). This means that the browser's default page color
is used.

Background image

You can specify an image to display as the background for the Web page. Specify an
image filename or select a file from a FILEDIALOG by pressing the ellipsis (...) button.
The default is no image.

Window Settings

When run over the Web, an application’s current window is represented by an HTML
<TABLE>. This allows you to set <TABLE> properties such as background color and
border width. The prompts on this tab allow you to specify the appearance of the
“window” (<TABLE>) portion of the HTML page. The template generated code calls the
WebWindow. SetBackground method to set these properties.

Background color

You can specify the color to use for your application’s window. Specify a Color, a color
equate, or select a color from the COLORDIALOG by pressing the ellipsis (...) button.
The default is no color (the equate is COLOR:NONE). This means that the background
color of the application’s window is used.

Tip
You can also set colors for discrete parts of the window, such as the toolbar. See
Window Component Options.

Background image
You can specify an image to display as the background for your application’s window.

The Internet Builder Class Templates 179

Help

Specify an image filename or select a file from a FILEDIALOG by pressing the ellipsis (...)
button. The default is no image.

Tip

A background image tiles (i.e., it repeats as many times as its size allows) inside an
HTML <TABLE> cell representing the application’s window. Provide a small image that
tiles to save bandwidth.

Window border width

Specify the border width for your application’s window. The default is 2, which makes a
thin border. Specify a 0 border width to display no border. The template generated code
calls the WebWindow.SetBorderWidth method to set the property.

Enable Help for internet applications

Check this box to enable links from Help buttons in your application. (A Help button is a
BUTTON with the STD:Hlp attribute). If Help is enabled, a Help button will call a Web
page based on the Help ID of the current window. This document is opened in a Browser
window named “_HELP” which will cause a new browser window to open or if a frame
already has that name, it displays the Help document inside that frame. The template
generated code uses the WebWindow. SetHe lpDocument method or the
WebWindow.SetHe IpURL method to set the properties you specify. You are responsible
for creating the corresponding HTML pages. See Implementing Help in your Web
Application.

URL of Help documents
The base location of the HTML files for your Help. For example, your HTML Help files are
located in a separate subdirectory.

Help Window Style
You can optionally supply a style for your Help window.

Help Ids are links within a base document
If your Help is designed as a single document with mid-page anchors, check this box. If
not checked, the Help buttons reference individual HTML pages.

Help Document
The base document containing the mid-page anchors. This field is enabled only when the
Help Ids are links within a base document box is checked.

180 Internet Application Guide

Window Components

Press this button to specify the appearance of the window’s components (e.g.,
TOOLBAR, MENU, and Caption areas). See Window Component Options.

Control

The prompts on this tab allow you to set the defaults for generating the HTML code that
represents each of your application’s controls.

Tip

In addition to the settings here, you can set control options for individual controls in the
procedure template’s Internet Options. See Individual Overrides for a Control.

General

If control disabled

Specifies what to display on the browser when a window control is disabled. This option
is provided because most HTML controls do not support disabling. This sets the
WebWindow.DisabledAction property.The choices are:

Hide
Hides any disabled controls (the default).

Hide if cannot disable
Hides any disabled control when it cannot be disabled on the Web page. Most
HTML controls cannot be disabled.

Show

Displays any disabled controls. It appears normally (i.e., it will appear to be
enabled), but changes made to the control will not affect the underlying
application.

Drop listboxes - Replace with Java non-drop list
Allows you to replace a drop-down list with a page-loaded Java Listbox. If your drop-
down lists need to display more than one column, use this option.

Sheets - Border width

Specify the border width for SHEET controls. The default is 2, which makes a thin border.
Specify a 0 border width to display no border. This sets the
WebWindow.SheetBorderWidth property.

Options - Border width

Specify the border width for OPTION controls. This only applies to OPTIONs with the
BOXED attribute. The default is 2, which makes a thin border. Specify a 0 border width
to display no border. This sets the WebWindow.OptionBorderWidth property.

The Internet Builder Class Templates

181

MDI

Groups - Border width

Specify the border width for GROUP controls. This only applies to GROUPs with the
BOXED attribute. The default is 2, which makes a thin border. Specify a 0 border width
to display no border. This sets the WebWindow.GroupBorderWidth property.

This section determines the manner in which Application Menus and Toolbars are
handled.

Tip
For control over specific Menu or Toolbar items, set the MDI overrides in the Frame
Procedure’s Internet Options.

Frame Menu

This section determines the manner in which Application Menus are handled. This allows
you to specify which global menu options are displayed on “child” windows.

Include on Child Windows
Select an option from the drop-down list. The choices are:

All Menu ltems All menu choices appear on child windows.
No Menu Items No menu choices appear on child windows.

Ignore code in frame’s ACCEPT loop

Check this box to ignore any code in the Application Frame’'s ACCEPT loop for menu
items. If not checked, any embedded code implemented in the Frame’s ACCEPT loop is
automatically implemented in the child procedure.

Frame Toolbar

This section determines the manner in which Application Toolbar controls are handled.
This allows you to specify which global Toolbar controls are displayed on “child” windows.

Include on Child Windows
Select an option from the drop-down list. The choices are:

All Toolbar Items All Toolbar items appear on child windows.

Standard Toolbar Only

Only the Standard Toolbar items appear on child windows. These are the buttons
added by the FrameBrowseControl template.

No Toolbar Items No Toolbar items appear on child windows.

182 Internet Application Guide

Ignore code in frame’'s ACCEPT loop

Check this box to ignore any code in the Application Frame’s ACCEPT loop for toolbar
items. If not checked, any embedded code implemented in the Frame’s ACCEPT loop is
automatically implemented in the child procedure.

Advanced

Horizontal Pixels per Char
The number of pixels to consider for a character’s width when calculating the size to
create Java applets and Images.

Vertical Pixels per Char
The number of pixels to consider for a character’s height when calculating the size to
create Java applets and Images.

The numbers specified affect the overall appearance of the generated HTML page. For
example, increasing the value of Vertical Pixels per Char will make the HTML Table cells
taller.

Delta for grid snapping
The number of pixels to consider before repositioning a control. Specify a value for X and
a value for Y. Any time a control is within this range, it is not repositioned.

Page to return to on exit

Optionally, specify the HTML page to return to when the program ends. The template
generated code calls the WebServer . Init method to set the

WebServer .PagetoReturnTo property.

Time out (seconds)

This specifies the maximum amount of idle time (measured in seconds) before an
application closes. The default is 600 seconds (10 minutes). The template generated
code calls the WebServer . Init method to set the WebServer._TimeOut property.

Sub directory for pages

The directory in which the application creates temporary directories (a temporary
directory is made for each active connection) to write the dynamic HTML and graphic
files. This is also the directory in which to deploy graphic files. If you provide a graphic in
this directory, it is not extracted and written to the temporary directory. This defaults to
/PUBLIC. The template generated code calls the WebFi lesManager . Init method to set
the property. It is not appropriate to set this property at runtime.

The Internet Builder Class Templates 183

Classes Local to Application Broker

This specifies that the Java Support Library files are located in the /PUBLIC directory
below the broker directory. If you are using multiple servers, you may want a single
source from which these files are to be retrieved. In that case, you would clear the
checkbox and designate the URL for the Java Support Library files. This sets the
WebServer .JavaClassPath property.

Use Long Filenames
Check this box to allow long filnames to be created on the Web server.

Classes

The Classes Tab lets you specify which classes (objects) the Templates use to
accomplish various tasks, and the source modules that contain the class definitions. This
approach gives you the capability to use as much of the IBC Library as you want and as
much of your own classes as you want.

To change the class for an item or override the class, highlight it in the list, then press the
Properties button.

The Internet Builder Class Library Reference (on CD in .PDF format) is a complete guide
to the classes used by the IBC templates. It provides descriptions of all the classes,
methods, and properties with examples for each.

See Also: Class Overrides, Global Window Component Options

184 Internet Application Guide

Global Window Component Options

Caption

This is the area at the top of the “window” in the HTML page. This is the portion
representing the title bar.

Include caption
Check this box to display the Caption. If not checked, the caption is not used. This sets
the WebWindow.CreateCaption property.

Background color

You can specify the color to use for the Caption area. Specify a Color, a color equate, or
select a color from the COLORDIALOG by pressing the ellipsis (...) button. The default is
Navy Blue (the equate is COLOR:Navy). If no color is specified here and you specified a
Window background color in Window settings above, that color is used. If neither is
specified and the application’s WINDOW has a COLOR attribute, that color is displayed
in the browser. The template generated code calls the WebCaption.SetBackground
method to set this property.

Background image

You can specify an image to display as the background for the Caption area. Specify an
image filename or select a file from a FILEDIALOG by pressing the ellipsis (...) button.
The default is no image. The template generated code calls the
WebCaption.SetBackground method to set this property.

Tip
A background image tiles (i.e., it repeats as many times as its size allows) inside an

HTML <TABLE> cell representing the application’s window caption area. Provide a small
image that tiles to save bandwidth.

Alignment
You can control the alignment of the text in the caption area. The choices are Left,
Center, or Right justification. The default is Center. This sets the WebCaption.Alignment

property.

Font family name

This allows you to specify the typeface to display. Keep in mind that the browser can only
display fonts which are installed on the client’s machine. However most operating
systems support font substitution and will display the closest matching font. The default is
none which uses the browser’s default font. The template generated code calls the
WebCaption.SetFont method to set this property.

The Internet Builder Class Templates 185

Font size

Optionally, specify the point size for the Font displayed in the caption area. The default is
none which uses the browser’s default font size. The template generated code calls the
WebCaption.SetFont method to set this property.

Font color

You can specify the Font's color for the Caption area. Specify a Color, a color equate, or
select a color from the COLORDIALOG by pressing the ellipsis (...) button. The default is
white (the equate is COLOR:White).

Menu
This is the menu area at the top or side of the “window” in the HTML page.

Background color

You can specify the color to use for the Menu area. Specify a Color, a color equate, or
select a color from the COLORDIALOG by pressing the ellipsis (...) button. If no color is
specified here and you specified a Window background color in Window settings above,
that color is used. If neither is specified and the application’s WINDOW has a COLOR
attribute, that color is displayed in the browser. The template generated code calls the
WebMenubar . SetBackground method to set this property.

Background image

You can specify an image to display as the background for the Menu area. Specify an
image filename or select a file from a FILEDIALOG by pressing the ellipsis (...) button.
The default is no image. The template generated code calls the
WebMenubar . SetBackground method to set this property.

Tip
A background image tiles (i.e., it repeats as many times as its size allows) inside an

HTML <TABLE> cell representing the application’s menu area. Provide a small image
that tiles to save bandwidth.

Alignment

You can control the position of the menu. The choices are Above Toolbar (the default),
Left of Window, or below the Toolbar. When you use Above Toolbar, the menu is spread
horizontally across the top of the HTML page. When you use Below the Toolbar, the
menu is spread horizontally across the the HTML page under the Toolbar area. When
you use Left of Window, the menu is spread Vertically to the left of the <TABLE>
representing the application’s window.

186 Internet Application Guide

ToolBar

This is the toolbar area at the top of the “window” in the HTML page (below the caption
area).

Background color

You can specify the color to use for the Toolbar area. Specify a Color, a color equate, or
select a color from the COLORDIALOG by pressing the ellipsis (...) button. If no color is
specified here and you specified a Window background color in Window settings above,
that color is used. If neither is specified and the application’s WINDOW has a COLOR
attribute, that color is displayed in the browser. The template generated code calls the
WebToolbar.SetBackground method to set this property.

Background image

You can specify an image to display as the background for the Toolbar area. Specify an
image filename or select a file from a FILEDIALOG by pressing the ellipsis (...) button.
The default is no image. The template generated code calls the
WebToolbar.SetBackground method to set this property.

Create extra close button

Specifies when to provide a Close button for a window. This button is in addition to any
other buttons on the window. It is provided to replace the System Close button
automatically provided by Windows but not automatically provided by a browser. If your
windows all have close buttons, you do not need to provide an extra one. The choices
are:

Never
Never creates an extra Close button.

If window has system menu and no visible buttons
Creates a Close button only when the WINDOW has a SYSTEM attribute and no
other BUTTONS.

If window has system menu
Creates a Close button only when the WINDOW has a SYSTEM attribute

Always
Always creates a Close button.

Image for close

Specifies the icon to display for the Close button. Specify an icon filename or select a file
from a FILEDIALOG by pressing the ellipsis (...) button. The default is EXIT.ICO, a small
blue X, (distributed with Clarion).

The Internet Builder Class Templates 187

Client Area

Class

This is the area of the “window” in the HTML page representing the application’s client
area.

Background color

You can specify the color to use for your application’s client area. Specify a Color, a color
equate, or select a color from the COLORDIALOG by pressing the ellipsis (...) button. If
no color is specified here and you specified a Window background color in Window
settings above, that color is used. If neither is specified and the application’s WINDOW
has a COLOR attribute, that color is displayed in the browser. The template generated
code calls the WebClientArea. SetBackground method to set this property.

Background image

You can specify an image to display as the background for your application’s client area.
Specify an image filename or select a file from a FILEDIALOG by pressing the ellipsis (...)
button. The default is no image. The template generated code calls the
WebClientArea.SetBackground method to set this property.

Tip
A background image tiles (i.e., it repeats as many times as its size allows) inside an

HTML <TABLE> cell representing the application’s client area. Provide a small image
that tiles to save bandwidth.

Overrides

Override default class
To override the IBC class, check this box and specify the Class Name, Header file (.INC),
and Implementation file (.CLW) in the fields below.

Class Name
Specify the name of the class to use or the default class name if you wish to override the
default class.

Header file
Specify a header file (the file containing the Class declarations) or select a file from a
FILEDIALOG by pressing the ellipsis (...) button.

Implementation file
Specify an implementation file (the file containing the Class definitions or or source code)
or select a file from a FILEDIALOG by pressing the ellipsis (...) button.

188 Internet Application Guide

Internet Procedure Extension Template

This template allows you to customize the appearance and behavior of a procedure when
it is executed over the Web. The settings you specify here are local in nature, that is they
affect only this procedure. To change Global Settings: press the Global Button on the
Application Generator, then press the Extensions button, and modify the settings for the
Internet Application Extension.

To modify the settings, press the Internet Options button on the Procedure Properties
window.

None of these settings affect the way your application works when running locally as a
Windows executable.

Page Settings

When run over the Web, an application’s window is displayed inside an HTML page (a
Web page). The page settings allow you to specify a background color or background
image for the HTML page. The template generated code calls the

WebWindow. SetPageBackground method to set these properties.

Override Global settings

Check this box to override the Page settings in the Internet Application Global Extension
template. Checking this box enables the other prompts.

Center Window on Page
Check this box to center the HTML representation of your window inside the Web page.
This adds <CENTER></CENTER> HTML tags to the Web page.

Background color

You can specify the color to use for the Web page. Specify a Color, a color equate, or
select a color from the COLORDIALOG by pressing the ellipsis (...) button. The default is
no color (the equate is COLOR:NONE). This means that the browser's default page color
is used.

Background image

You can specify an image to display as the background for the Web page. Specify an
image filename or select a file from a FILEDIALOG by pressing the ellipsis (...) button.
The default is no image.

The Internet Builder Class Templates 189

Window Settings

When run over the Web, an application’s window is represented by an HTML <TABLE>.
The prompts on this tab allow you to specify the appearance of the “window” portion of
the HTML page which displays when running the application over the Web.

Override Global settings
Check this box to override the Window settings in the Internet Application Global
Extension template. Checking this box enables the other prompts.

Background color

You can specify the color to use for your application’s window. Specify a Color, a color
equate, or select a color from the COLORDIALOG by pressing the ellipsis (...) button.
The default is no color (the equate is COLOR:NONE), this means that the background
color of the application’s window is used. The template generated code calls the
WebWindow.SetBackground method to set this property.

Background image

You can specify an image to display as the background for your application’s window.
Specify an image filename or select a file from a FILEDIALOG by pressing the ellipsis (...)
button. The default is no image. The template generated code calls the
WebWindow.SetBackground method to set this property.

Tip

A background image tiles (i.e., it repeats as many times as its size allows) inside an
HTML <TABLE> cell representing the application’s window. Provide a small image that
tiles to save bandwidth.

Window border width
Specify the border width for your application’s window. The default is 2, which makes a
thin border. Specify a 0 border width to display no border.

Help

Override Global settings
Check this box to override the Help settings in the Internet Application Global Extension
template. Checking this box enables the other prompts.

URL of Help documents
The base location of the HTML files for your Help. For example, your HTML Help files
are located in a separate subdirectory.

Help Window Style
You can optionally supply a style for your Help window

190 Internet Application Guide

Help Ids are links within a base document
If your Help is designed as a single document with mid-page anchors, check this box. If
not checked, the Help buttons reference individual HTML pages.

Help Document
The base document containing the mid-page anchors. This field is enabled only when the
Help Ids are links within a base document box is checked.

Window Components

Press this button to specify settings to specify the appearance of the window’s
components (e.g., TOOLBAR, MENU, and Caption areas). These settings override any
corresponding Global settings. See Procedure Window Component Options.

Return if launched from browser

Closes the procedure when executed over the Web. This effectively disables Web access
to the procedure.

Controls

To Override Global settings:

Check the box to the left of an option to override the control settings in the Internet
Application Global Extension template. Checking this box enables the prompt for that
option.

General

If control disabled

Specifies what to display on the browser when a window control is disabled. This option
is provided because most HTML controls do not support disabling. This sets the
WebWindow.DisabledAction property.The choices are:

Hide Hides any disabled controls (the default).
Hide if cannot disable
Hides any disabled control when it cannot be disabled on the Web page. Most HTML
controls cannot be disbled.

Show Displays any disabled controls. It appears normally (i.e., it will appear to
be enabled), but changes made to the control will not affect the
underlying application.

The Internet Builder Class Templates 191

Internet Options... E

‘window Cantralz |Advanced| [=[E]|
Gener Cancel |
I 1f dontral disabled: IHide contral VI

| Drop ligboxe: Help |
r Fieplace with J ava non-drop list |

| Sheet
™ Bofder width: B = ‘

-0 ption:

Befder width fif bored: [2 | ‘
|-Group:
et width (i bored): |2 | ‘

i
~Indiyidual control optior

To override the Global setting, check the box

Properties I

Drop listboxes

Replace with Java non-drop list
This allows you to replace a drop-down list with a page-loaded Java Listbox. If your drop-
down lists need to display more than one column, use this option.

Sheets

Border width

Specify the border width for SHEET controls. The default is 2, which makes a thin border.
Specify a 0 border width to display no border. This sets the
WebWindow.SheetBorderWidth property.

Options

Border width

Specify the border width for OPTION controls. This only applies to OPTIONs with the
BOXED attribute. The default is 2 for a thin border. Specify a 0 border width to display no
border. This sets the WebWindow.OptionBorderWidth property.

Groups

Border width

Specify the border width for GROUP controls. This only applies to GROUPs with the
BOXED attribute. The default is 2, which makes a thin border. Specify a 0 border width
to display no border. This sets the WebWindow.GroupBorderWidth property.

192 Internet Application Guide

Individual Control Overrides

This section allows you to override the appearance or behavior of individual controls in
the window. Highlight the control to modify and press the Properties button. See
Individual Overrides for a Control.

MDI

This section determines the manner in which Application Menus and Toolbars are

handled.

Tip

For control over specific Menu or Toolbar items, set the MDI overrides in the Frame

Procedure’s Internet Options.

Merge Frame Menu

Check this box to Merge the Frame’s Menu when running this procedure.

Merge Frame Toolbar

Check this box to Merge the Frame’s Toolbar when running this procedure.

For a Frame Procedure, you have additional options. See Frame Procedure MDI Options.
Advanced

Formatting

Override Global settings
Check this box to override the formatting settings in the Internet Application Global
Extension template. Checking this box enables the other prompts.

Horizontal Pixels per Char
The number of pixels to consider for a character’s width when calculating the size to
create Java applets and Images.

Vertical Pixels per Char
The number of pixels to consider for a character’s height when calculating the size to
create Java applets and Images.

Delta for grid snapping
The number of pixels to consider before repositioning a control. Specify a value for X and
a value for Y. Any time a control is within this range, it is not repositioned.

The numbers specified affect the overall appearance of the generated HTML page. For
example, increasing the value of Vertical Pixels per Char will make the HTML Table cells
taller.

The Internet Builder Class Templates 193

Security

Transfer over a secure connection

If checked, data is transmitted using a Secure Socket Layer (SSL). This allows secure
transactions on a procedure level. Keep in mind that encryption has a marked effect on
performance. You should only enable security for procedures which transmit sensitive
data.

This feature required installation of the secure version of the Application Broker. This
feature is not available in this version.

Restrict Access to this procedure
Check this box to password protect the procedure and enable the two fields below.

Password

Specify a password or select a variable from the file schematic by pressing the ellipsis
(...) button. A static password provides simple protection. For more information, see
Using Passwords.

Case Sensitive
Check this box to enforce case sensitive validation of the password. If the box is not
checked, case is ignored.

Window refresh

Show progress window

This controls the window associated with a Report or Process procedure. It is not
available for other procedure types. Check this box to display the window associated with
the Report Procedure when running over the Web. If not checked, the window is ignored.
If the window in a Report Procedure contains a Pause Button control template, the box is
checked and cannot be changed. In a Process procedure, the box is checked and cannot
be changed. This makes sure the window displays.

Time between refresh
Specify the number of seconds between each refresh.

Action on Timer
Specify the action to perform when the timer event is reached. The choices are:

Partial Page refresh Redisplays Java controls and HTML entry controls to reflect
current data.

Submit page Sends data to server application and redraws page as instructed
by the server application

Complete Page refresh Redraws the entire page.

194 Internet Application Guide

Enable Refresh on timer

Check this box to refresh the entire page or only the page data based on a timer. A
TIMER attribute on a WINDOW is independant of this setting. This setting is used on the
Web and the TIMER attribute is used when the application runs under Windows.

Tip
This feature should be used sparingly to ensure minimal network traffic.

Time between refresh
Specify the number of seconds between each refresh.

Action on Timer
Specify the action to perform when the timer event is reached. The choices are:

Partial Page refresh Redisplays Java controls and HTML entry controls to
reflect current data.

Submit page Sends data to server application and redraws page as
instructed by the server application

Complete Page refresh Redraws the entire page.

The Internet Builder Class Templates 195

Individual Overrides for a Control

The prompts for individual control overrides change based on the type of control and its
attributes. Every possible override is listed here with the conditional options noted.

Override Global settings
Check the box to the left of an option to override the control settings in the Internet
Application Global Extension template. Checking this box enables the other prompts.

Display

If control disabled

Specifies what to display on the browser when a window control is disabled. This option
is provided because most HTML controls do not support disabling. This sets the
IC:CurControl .DisabledAction property. The choices are:

Hide Hides any disabled controls (the default).

Hide if cannot disable Hides any disabled control when it cannot be disabled
on the Web page. Most HTML controls cannot be
disbled.

Show Displays any disabled controls. It appears normally (i.e.,
it will appear to be enabled), but changes made to the
control will not affect the underlying application.

Hide if launched from browser

Check this box to hide the control when the application is run over the Web. This allows
you to disable display of some data or remove some functionality for the Web version of
your application without removing it from the Windows version.

Autospot Hyperlinks

This option is available for LIST and STRING controls. If checked, any data displayed
which contains a valid hyperlink (i.e., those beginning with http:, https:, ftp:, mailto:,
news:, telnet:, wais:, or gopher:) is made into a hyperlink jump.

Allow dynamic updates

This option is available for STRING controls. If checked, the string control is created on
the HTML page as a Java string control which updates whenever a partial page update
occurs.

STRING controls with a variable as the USE attribute automatically become Java String
controls and do not need this override option. This is only appropriate for a static STRING
which changes by a property assignment (e.g., ?String1{PROP:Text} = ‘New Text').

196 Internet Application Guide

Image Options

Update Image dynamically

This option is available for IMAGE controls. If checked, the control is created on the
HTML page as a Java Image control which updates whenever a partial page update
occurs.

IMAGE controls with a variable as the USE attribute automatically become Java Image
controls and do not need this override option. This is only appropriate for a static IMAGE
which changes by a property assignment (e.g., ?Imagel{PROP:Text} = ‘New.gif").

Alternative text

Optionally provide alternative text to display while the image is loading. This is added to
the HTML IMG ALT= tag. Alternative text displays while the graphic file is transferred to
browser (before the image displays) or instead of the image if the user disables image
display in the browser’s preferences.

Border width

This option is available for SHEET, OPTION (if boxed) and GROUP (if boxed) controls.
Specify the border width for the control. The default is 2, which makes a thin border.
Specify a 0 border width to display no border.

HTML

One of the most powerful features of the IBC Templates is the ability to embed HTML
code in the HTML pages which are output by the Web-enabled application. This feature
allows you to add any HTML code at points before or after any control on the resulting
Web page. This code does not affect the application when it is running as a Windows
executable.

Using Embedded HTML, you can write any HTML code supported by the browser. You
can insert your own custom JavaScript, Java applets, ActiveX controls, Shockwave files,
or other objects.

Optionally, you can check the Remove Default HTML generation box to supress
generation of HTML for the control.

See also: Embedding HTML.

The Internet Builder Class Templates 197

Events

This tab allows you to override the default event handling for a control. This tab is only
available for controls which generate events.

Every control has a default action. This determines how its events are processed. For
example, a command button’s default action is to submit the page to the server
application and return a fresh Web page.

The ability to override the default event handling when the application is executed in a
browser allows you to optimize the application for the Web environment and ensure that
all of your embedded code is executed at the time you expect it to. For example, an entry
control’s events are processed on the browser by default. This means that any code on
the Event:Accepted for an entry control is not executed until the page is submitted by a
command button or other control that submits a page. Using Individual control overrides,
you can specify a partial refresh on an Entry Control's Accepted event and embedded
code executes as it would when running locally (under Windows).

By default, most controls which allow data entry have their events processed on the
browser. This means your embedded code would not execute at the expected time (e.g.,
code in the Event:Accepted embed point for a control would not execute until the OK
button submitted the page). This section allows you to override the Browser's event
handling.

To override a control’s event handling, highlight the event and press the Properties
button.

Override default action
Check this to override the default action for the control event. Checking this box enables
the other prompts.

Action on Event
Select the action to perform when the event occurs. The choices are:

Process on Browser Allows event handling to be handled locally on the
browser.

Partial page refresh Specifies that all Java Controls and HTML Entry controls
should receive and display updated data.

Complete page refresh Replaces the entire page.

198 Internet Application Guide

Classes

The Classes Tab lets you specify which classes (objects) the Templates use to
accomplish various tasks, and the source modules that contain the class definitions. This
approach gives you the capability to use as much of the IBC Library as you want and as
much of your own classes as you want.

To change the class for an item or override the class, highlight it in the list, then press the
Properties button.

Override default class
To override the IBC class, check this box and specify the Class Name, Header file, and
Implementation file in the fields below.

Class Name
Specify the name of the class to use or the default class name if you wish to override the
default class.

If you choose another class from the IBC Library, you do nto need to specify a Header or
Implementation file.

Header file
Specify a header file (the file containing the Class declarations) or select a file from a
FILEDIALOG by pressing the ellipsis (...) button.

Implementation file
Specify an implementation file (the file containing the Class definitions or or source code)
or select a file from a FILEDIALOG by pressing the ellipsis (...) button.

The Internet Builder Class Templates 199

Procedure Window Component Options

Caption
This is the area at the top of the “window” in the HTML page.

Override Global settings
Check this box to override the Caption settings in the Internet Application Global
Extension template. Checking this box enables the other prompts.

Include caption
Check this box to display the Caption. If not checked, the Caption is not used.

Background color

You can specify the color to use for the Caption area. Specify a Color, a color equate, or
select a color from the COLORDIALOG by pressing the ellipsis (...) button. The default is
Navy Blue color (the equate is COLOR:Navy). If no color is specified and the
application’s WINDOW has a COLOR attribute, that color is displayed in the browser.
The template generated code calls the WebCaption.SetBackground method to set this

property.

Background image

You can specify an image to display as the background for the Caption. Specify an image
filename or select a file from a FILEDIALOG by pressing the ellipsis (...) button. The
default is no image. The template generated code calls the WebCaption.SetBackground
method to set this property.

Tip
A background image tiles (i.e., it repeats as many times as its size allows) inside an

HTML <TABLE> cell representing the application’s window caption area. Provide a small
image that tiles to save bandwidth.

Alignment
You can control the alignment of the text in the caption area. The choices are Left,
Center, or Right justification. The default is Center.

Font family name
This allows you to specify the typeface to display. Keep in mind that the browser can only
display fonts which are installed on the client’s machine.

Font size
Optionally, specify the point size for the Font displayed in the caption Area. The default is
no size specified, which uses the browser’s default font size.

200 Internet Application Guide

Font color
You can specify the Font’s color for the Caption area. Specify a Color, a color equate, or
select a color from the COLORDIALOG by pressing the ellipsis (...) button.

Menu
This is the menu area at the top or side of the “window” in the HTML page.

Override Global settings
Check this box to override the Menu settings in the Internet Application Global Extension
template. Checking this box enables the other prompts.

Background color

You can specify the color to use for the Menu area. Specify a Color, a color equate, or
select a color from the COLORDIALOG by pressing the ellipsis (...) button. The template
generated code calls the WebMenubar .SetBackground method to set this property.

Background image

You can specify an image to display as the background for the Menu area. Specify an
image filename or select a file from a FILEDIALOG by pressing the ellipsis (...) button.
The default is no image. The template generated code calls the
WebMenubar . SetBackground method to set this property.

Tip
A background image tiles (i.e., it repeats as many times as its size allows) inside an

HTML <TABLE> cell representing the application’s menu area. Provide a small image
that tiles to save bandwidth.

Alignment
You can control the position of the menu alignment. The choices are Above Toolbar (the
default) or Left of Window.

Toolbar

This is the toolbar area at the top of the “window” in the HTML page (below the caption
area).

Override Global settings
Check this box to override the Toolbar settings in the Internet Application Global
Extension template. Checking this box enables the other prompts.

Background color

You can specify the color to use for the Toolbar area. Specify a Color, a color equate, or
select a color from the COLORDIALOG by pressing the ellipsis (...) button. The template
generated code calls the WebToolbar . SetBackground method to set this property.

The Internet Builder Class Templates 201

Background image

You can specify an image to display as the background for the Toolbar area. Specify an
image filename or select a file from a FILEDIALOG by pressing the ellipsis (...) button.
The default is no image. The template generated code calls the
WebToolbar . SetBackground method to set this property.

Tip
A background image tiles (i.e., it repeats as many times as its size allows) inside an

HTML <TABLE> cell representing the application’s toolbar area. Provide a small image
that tiles to save bandwidth.

Close button

Override Global settings
Check this box to override the Close button settings in the Internet Application Global
Extension template. Checking this box enables the other prompts.

Create extra close button
Specifies when to provide a Close button for a window.

Image for close

Specify the icon to display for the Close button. Specify an icon filename or select a file
from a FILEDIALOG by pressing the ellipsis (...) button. The default is exit.ico (distributed
with Clarion for Windows).

Client Area

This is the area of the “window” in the HTML page representing the application’s client
area.

Override Global settings
Check this box to override the Client Area settings in the Internet Application Global
Extension template. Checking this box enables the other prompts.

Background color

You can specify the color to use for the application’s client area. Specify a Color, a color
equate, or select a color from the COLORDIALOG by pressing the ellipsis (...) button.
The template generated code calls the WebClientArea.SetBackground method to set
this property.

Background image

You can specify an image to display as the background for your application’s client area.
Specify an image filename or select a file from a FILEDIALOG by pressing the ellipsis (...)
button. The default is no image. The template generated code calls the
WebClientArea.SetBackground method to set this property.

202 Internet Application Guide

Tip

A background image tiles (i.e., it repeats as many times as its size allows) inside an
HTML <TABLE> cell representing the application’s client area. Provide a small image
that tiles to save bandwidth.

The Internet Builder Class Templates 203

Frame Procedure MDI Options

Application Menu

Override Global settings
Check this box to override the Menu MDI settings in the Internet Application Global
Extension template. Checking this box enables the other prompts.

Include on Child Windows
Select the option from the drop-down list. The choices are:

Global Setting Menu choices appear on child windows as specified in
the Global options.

All Menu ltems All menu choices appear on child windows.
No Menu Items No menu choices appear on child windows.

Selected Menu Iltems Allows you to select individual menu options from the list
below.

Ignore code in frame’s ACCEPT loop
Check this box to ignore any embedded code in the Application Frame’s ACCEPT loop
for menu items.

Application Toolbar

This section determines the manner in which Application Toolbar controls are handled.
This allows you to specify which global Toolbar controls are displayed on “child” windows.

Override Global settings
Check this box to override the Toolbar MDI settings in the Internet Application Global
Extension template. Checking this box enables the other prompts.

204 Internet Application Guide

Include on Child Windows
Select the option from the drop-down list. The choices are:

Global Setting Toolbar controls appear on child windows as specified in
the Global options.

All Toolbar Items All Toolbar items appear on child windows.

Standard Toolbar Only Only the Standard Toolbar items appear on child
windows.

No Toolbar Items No Toolbar items appear on child windows.

Selected Toolbar Items Allows you to select individual Toolbar items from the list
below.

Ignore code in frame’'s ACCEPT loop
Check this box to ignore any embedded code in the Application Frame’s ACCEPT loop
for toolbar items.

The Internet Builder Class Templates 205

Code Templates

Dynamic HTML Code Template
This code template allows you to insert dynamic HTML code in any of the Internet embed
points. This template is only available for Embed points which can write to the delivered
HTML page at runtime.

You can specify any valid Clarion expression in the entry box. Any variables used in the
expression will use the current value at the time the HTML code is written.

When creating your expression to write HTML code, you must handle special characters,
such as <, by using two characters in succession.

This template uses the Target.WriteLn method to write the value of the expression to
the delivered HTML page.

See also: Embedding HTML

Static HTML Code Template
This code template allows you to insert static HTML code in any of the Internet embed
points. This template is only available for Embed points which can write to the delivered
HTML page at runtime.

You can specify any valid HTML code in the entry box.

This template uses the Target.WriteLn method to write the HTML code to the delivered
HTML page.

If you use the Static HTML Code Template, special characters are handled automatically.

See also: Embedding HTML

206 Internet Application Guide

GetCookie Code Template
This template allows you to retrieve a cookie from the client’s machine.

Cookie Name

Provide a name for the cookie. This is the name used in the SetCookie Code template to
write the cookie. If the cookie does not exist, a null value is assigned to the Variable to
Set.

Variable to Set
Select a variable from the file schematic by pressing the ellipsis (...) button. The value of
the cookie is assigned to the variable.

See also: SetCookie Code Template, Cookies (Persistent Client Data)

SetCookie Code Template
This template allows you to set a cookie on the client's machine for later retrieval.

Cookie Name
Provide a name for the cookie. This is the name to use in the GetCookie Code template
to retrieve the cookie. If a cookie of the same name exists, it is overwritten.

New Value
Specify a value or select a variable from the file schematic by pressing the ellipsis (...)
button. This value is assigned to the cookie.

See also: GetCookie Code Template, Cookies (Persistent Client Data)
Cookies (Persistent Client Data)

Cookies are a method for Web servers to both store and retrieve information on the client
side of the connection. This allows a server to store data on the client's machine and
retrieve it later.

A server can send a piece of data to the client (browser) which the client stores locally.
This is known as a cookie (the name has no known origin). Cookies contain a range of
URLs for which it is valid. Later, when the client returns to a URL within that range, the
server can query the cookie and use that data. A server cannot retrieve information from
other servers (i.e., a server cannot query a cookie that is out of its domain range).

This mechanism is similar to the INI file storage and retrieval paradigm in Windows
(GETINI and PUTINI) and provides a method for identifying user preferences, and other
data. For example, an application which requires a user to provide their name before
entering can use a cookie to avoid the Login process after the first visit.

The Internet Builder Class Templates 207

Cookies are machine specific so a client who accesses a site from more than one
machine will need to provide the cookie information once for each machine so a cookie is
stored on the machine. In addition, cookies are browser specific, so a client who uses
more than one browser, will need to set and get cookies for each browser.

Your Web-enabled applications can use cookies to store user preferences such as the
default city and state for new records. These settings can be retrieved the next time the
user runs the application over the Web.

See also: GetCookie Code Template, SetCookie Code Template

AddServerProperty Code Template

This template allows you to set the value of the specified outgoing http item in the HTTP
header.

Property Name
Provide the property name to set.

Property Value
Select a variable from the file schematic by pressing the ellipsis (...) button. The value of
the variable is assigned to the property.

See Also : GetServerProperty Code Template

GetServerProperty Code Template
This template allows you to get the value of the specified http item in the HTTP header.

Property Name
Provide a name for the HTTP property. If the HTTP field does not exist, a null value is
assigned to the Variable to Set.

Variable to Set
Select a variable from the file schematic by pressing the ellipsis (...) button. The value of
the property is assigned to the variable.

See Also : SetServerProperty Code Template

208

Internet Application Guide

11 - Web Application Design Considerations

Most common Windows application design rules apply to Web application design. It is
equally important to provide a consistent, understandable interface under either platform.

Keep in mind that the Web “platform” is not Windows. Your interface should be intuitive
for users on all supported platforms. The Java controls in the Java Support Library are
intuitive, but you may want to provide a brief explanation of how they work in your
application to facilitate their use.

Bandwidth Usage Considerations

The web introduces one additional programming challenge—bandwidth conservation. It is
important to keep your windows simple and utilize all the methods available to reduce the
amount of network traffic. This section provides some pointers, but is by no means
complete. It is intended to give you food for thought while designing applications.

Use Partial Refresh whenever possible

The use of a Partial Refresh, where appropriate, is the best way to optimize your Web
applications.

There are many times when a partial refresh is appropriate but a full refresh is the
default. This is necessary because the templates cannot anticipate every possibility. For
example, a multi-sorted list which has no controls populated on the Tabs performs better
if you use Individual Control Overrides to specify a Partial refresh when a tab is selected.
This will only change the data in the listbox instead of replacing the entire page.

To override a SHEETSs behavior for the example above, follow these steps:

1. From the Procedure Properties window, press the Internet Options button.

2. Select the Controls Tab.

3. Highlight the Sheet control in the Individual Control Options list (the wizard
generated SHEETSs are usually called ?CurrentTab).

4, Press the Properties button, then select the Events tab.

5. Highlight the Accepted event, then press the Properties button.

6. Check the Override default action box, then select Partial page refresh from the

drop-down list.

7. Press the OK buttons on all the windows to save and exit.

Web Application Design Considerations 209

One other aspect of Partial Refresh is its use to Update Controls over the Web. In
Windows applications, programmers often embed code to update one control when the
value of another control changes. For example, you might embed code to change the
total of a line item when the quantity of items changes. The Webtree tutorial application
has code like this in the Updateltems procedure. The embedded code is tied to the
EVENT:Accepted on each control. In other words, when the user changes the value in a
control and tabs off it or selects another control with a mouse click, the code is executed.

When an application runs over the Web, ENTRY controls are processed on the browser
by default. In other words, there is no interaction between the browser and the server
application—unless you change the event handling options for that control. If you want to
update controls over the Web, change the action for controls to ensure that embedded
code is executed on the Event:Accepted.

Be frugal with controls

Populate as few controls as necessary on a window. This is good practice in Windows
application design and is even more important in a browser/server implementation

When using listboxes, populate as few controls in the list as needed to uniquely identify a
record for a user. This reduces the amount of data sent to fill the list. If you want to
display more data for each record, you can populate hotfields next to the listbox and they
will update as the user scrolls.

Use graphics sparingly

This is a common rule for web design. You should limit the number of graphics to ensure
rapid page loading. In addition, you should reduce the file size as much as possible to
further save bandwidth usage. Many graphics utilities have tools to adjust graphics files
for web usage.

Covering the Download with a Splash Window

In order for a browser to “run” a Web-enabled application, the Java Support Library (JSL)
must be available to the client browser. First-time users must download either
Clarion.CAB (for Microsoft Internet Explorer) or Clarion.ZIP (for Netscape). In most
browsers, the JSL is only downloaded once and remains cached (until the user clears
that cache). Although the JSL is very compact for the degree of functionality it provides, it
can still take several minutes to download over a 28.8 modem. With that in mind, you
may want to use a “splash screen” window to alert first-time users that the download is in
progress. By placing a Java Button on that window, you can prevent users from
continuing until the JSL is downloaded and the Java button is initialized.

210

Internet Application Guide

Create the Window and Change the BUTTON to a Java Button

Create a procedure using the Window Procedure template. These instructions assume
you have named your procedure-Splash. This window should contains some text and a
Close Button control template. You can change the text on the BUTTON to Continue.
Since the button is created as an HTML button by default, you should specify that you
want it to be a Java button so that it will not be available until the JSL has downloaded.

1.

In the Application Tree, highlight the new procedure, then press the Properties
icon button.

Press the Internet Options button.
Select the Controls tab.

Highlight the close button control template (the default name is ?Close) in the
Individual Control Options list, then press the Properties button.

Select the Classes tab.

Check the Override default Class box, then select the WebJavaButtonClass
from the Class Name drop-down list.

Press the OK button.

Call the procedure before opening the Application Frame

1.

In the Application Tree, highlight the Main procedure, then press the Properties
icon button. This opens the Procedure Properties window.

Press the Embeds button. This opens the Embedded Source window.

Highlight the embed point as shown below:

= _| Local Objectz
L) Abe Objects
=8 _ 1 Window Manager [Windowhd ahager)
+_| Azl PROCEDURE WVIRTUAL
- _1 Changedction PROCEDURE().BYTE MIRTLIAL
-_1 Deletedction PROCEDURE[) BYTE MIRTUAL
-1 Init PROCEDURE[BYTE MIRTUAL
] DATA
CODE
= D Enter |:|r|:l|::E=|:|I.JrE FCOpE
> Bl Snap-shot GlobalR equest

Press the Insert button. This opens the Select Embed Type window.

Web Application Design Considerations 211

5. Highlight Source, then press the Select button.
6. In the Embedded Source editor, type the following source code:

IF WebServer_Active THEN Splash.

This makes sure that the Splash procedure is only called when the application is
running over the Web.

7. Make sure this embed is listed before the call to any other procedure using the
up or down button.

This ensures that the Splash procedure is called before any other window opens.

8. Press the Close button on the Embedded Source window and the OK button on
the Procedure Properties window.

9. Press the Procedures button.This opens the Called Procedures window.
10. Highlight Splash, then press the OK button.

This connects the Splash procedure to the Main procedure in the Application
Tree. This is necessary if your application is using Local MAPs.

212 Internet Application Guide

Cosmetic Design Considerations
Using Groups

When you populate a GROUP on a WINDOW, control declaration statements do not
necessarily end up inside the GROUP structure. This may cause an HTML
representation that does not look like the original window. Make sure the controls you
want inside the GROUP are actually inside the GROUP structure.

In the first example below (Badwind), the control declaration statements are all outside
the GROUP structure. This window displays fine in Windows because the AT attribute
values control the position and size of the GROUP box. When running over the Web, the
GROUP box is an HTML <TABLE> cell and is controlled by its contents.

Badwind WINDOW("Caption®),AT(,,260,120),GRAY
GROUP("Customer Info*),AT(5,9,205,102),USE(?Groupl) ,BOXED
END
PROMPT(*Customer: ") ,AT(11,28),USE(?CUST :Name:Prompt)
ENTRY (@s30) ,AT(61,26)USE(CUST :Name) ,LEFT,REQ
PROMPT(*Address: ") ,AT(15,47) ,USE(?CUST:Address:Prompt)
ENTRY (@s30) ,AT(61,45) ,USE(CUST :Address) ,LEFT
PROMPT("City: ") ,AT(29,69) ,USE(?CUST:City:Prompt)

ENTRY (@s20) ,AT(61,67) ,USE(CUST:City), INS
PROMPT("State:"),AT(25,88),USE(?CUST:State:Prompt)
ENTRY(@s2) ,AT(61,86) ,USE(CUST:State),LEFT,UPR

END

In the second example (Goodwind), the control declaration statements are within the
GROUP structure (i.e., between the GROUP and END statements) and will display as
expected when run over the Web.

Goodwind WINDOW("Caption®),AT(, ,260,120),GRAY
GROUP(*Customer Info*),AT(5,9,205,102),USE(?Groupl) ,BOXED
PROMPT("Customer: ") ,AT(11,28),USE(?CUST :Name:Prompt)

ENTRY (@s30) ,AT(61,26)USE(CUST:Name) ,LEFT,REQ
PROMPT(*Address: ") ,AT(15,47) ,USE(?CUST:Address:Prompt)
ENTRY (@s30) ,AT(61,45) ,USE(CUST :Address) ,LEFT
PROMPT("City: ") ,AT(29,69),USE(?CUST:City:Prompt)

ENTRY (@s20) ,AT(61,67) ,USE(CUST:City), INS
PROMPT("State:"),AT(25,88),USE(?CUST:State:Prompt)
ENTRY(@s2) ,AT(61,86) ,USE(CUST:State),LEFT,UPR

END

END

Web Application Design Considerations 213

Using Images

Java Image controls update automatically when the value of its source variable changes
(i.e., whenever a partial page update occurs). To use this feature for an IMAGE which
changes by a property assignment (e.g., ?Imagel{PROP:Text} = ‘New.gif’), use
Individual Control Overrides for the Image Control and specify to update dynamically.

Graphic files used by IMAGE controls are extracted to the temporary runtime directory for
the connection unless they are found in the /PUBLIC directory. The runtime library will
extract files of various types, but most browsers only support GIF and JPG formats.
Therefore, you should limit the graphic formats of IMAGE controls in a web-enabled
application to those two types. You could also choose to hide an IMAGE which uses a
format not supported by browsers using Individual Control Overrides. If an IMAGE is
based on a file that is not linked in, you should deploy the image file to the application's
directory.

You should provide alternative text for images (in Individual Control Overrides). This is
added to the HTML tag. Alternative text displays while the graphic file is
transferred to browser (before the image displays) or instead of the image if the user
disables image display in the browsers preferences.

Icons used in LIST controls or on BUTTONS are not automatically extracted and should
be deployed to the /PUBLIC directory.

If you are referencing an image in HTML code, you must indicate the location of the
image file. If you are deploying under the EXE version of the Application Broker you can
prefix the filename with a leading forward slash and deploy the image to the /PUBLIC
directory. For example . If you are using the ISAPI DLL version
of the Application Broker, you must use the SELF.FILES.GETAlias method to determine
the virtual path to the file. For example:

Target .WriteLN("<")

would find the mygif.gif file in any directory exposed to the server application.

214 Internet Application Guide

User Interface Design Considerations

MDI window access

Windows applications often use a Multiple Document Interface (MDI). This allows several
instances of an MDI child window to open. Each of these Child windows is available and
can receive focus using several navigation methods (e.g., the Window menu). This is
very convenient, but has some implications when porting the application to the Web
platform. A web page in a browser is a single document, however, the underlying server
application can be an MDI application and allow multiple windows. Many windows could
be open on the server application, but the browser only displays the current window. You
should keep this in mind when designing your application.

In a Web-enabled application, you can allow all menu and toolbar command to be visible
on child windows. This can be useful to allow a user to enter different areas of the
application without closing a child window to get to the main menu or toolbar. This also
has the potential pitfall of allowing a user to open multiple instances of a procedure.
Although only one will be visible at a time, there could be several windows open. If there
are two or more of the same window open, it may appear to the user that the procedure
did not close when the Close button was pressed. For this reason, you should either
restrict access to the Global Menu/toolbar or limit each MDI procedure to a single
instance using Thread limiting code. One technique of limiting threads is demonstrated in
one of the standard Clarion Examples—EventMgr.APP.

Restricting Edit-In-Place

The ABC Templates in Clarion allow you to enable Edit-In-Place with a single checkbox.
This feature, however, is not supported when running over the Web. Over the Web, you
must have a separate Form for updates. There is a simple method to alternate between
edit-in-place when running locally in Windows and calling a form when running over the
Web.

If you enable Edit-In-Place and specify an update procedure with the BrowseBox control
template, you have two-thirds of your work done. The template generated code either
calls a separate update procedure or does edit-in-place depending on the value of the
BRWn.AskProcedure property. Set the BRWn.AskProcedure property to 0 (zero) and you
have Edit-in-Place; Set it to 1 (One) and you call the update procedure.

To use Edit-in-place for local Windows and a form when running over the Web:
1. Select the Browse procedure, then press the Properties icon button.

2. In the UpdateButton section of the Procedure Properties window, check the Use
Edit in Place box.

Notice that an update procedure is already specified. Make sure to leave that
procedure named.

Web Application Design Considerations 215

Next, embed the code to set the update action to call Edit-in-Place when running
in Windows and call the form when running over the Web.

3. Press the Embeds button. This opens the Embedded Source window.
4, Highlight the embed point as shown below then press the Insert button.

- =] Local Objects
Z-=| Abc Objscts
= =] “Window Manager [Windowbd anager]
—=| Init PROCEDURET).EBYTE WIRTLAL

{8 CODE
> [E R Enter procedure scope
5. Highlight Source, then press the Select button.
6. In the Embedded Source editor, type the following source code:

IF WebServer.Active
BRW1:AskProcedure = 1

END
7. Exit the Source editor and save the changes.
8. Press the Close button on the Embedded Source window.

Unsupported Windows Standard Dialogs

There are certain Windows standard dialogs which are not appropriate for an application
running over the Web. Calling any of these will display a Not Supported Message:

COLORDIALOG
FILEDIALOG
FONTDIALOG
PRINTERDIALOG

If you are calling any of these with a BUTTON control, use the Individual Control Options
to "Hide if launched from Browser." (Internet Options Controls).

If you are calling the function in source code, enclose the function call inside a conditional
structure. For example:

IF NOT WebServer.Active I Check if running over the web
retval=COLORDIALOGQ) I if not, call the colordialog
END

216 Internet Application Guide

Using Command Line Parameters

If your application needs to receive command line parameters, you can pass them on the
browser's command line or via a hyperlink.

On the browser's location (URL) entry, specify the URL followed by the executable name,
followed by the dot zero (.0) followed by a question mark and the parameter. For
example,

HTTP://mydomain.com/myapp .exe.0?MyParameter

To handle the parameter in your application, you must interrogate the
WebServer.CommandLine property. If you are creating a hybrid application and want to
receive command line parameters from either Windows or the Web, use code similar to
the example below:

IF WebServer_Active ICheck if running over the
web
PRE:MyField = WebServer._.CommandLine !assign value to variable
ELSE Iif it is running locally
PRE:MyField = COMMAND(*®*") lassign value to variable
END

If you are passing multiple parameters, you must parse the string to access the individual
parameters.

Changing the Class for an individual control

At times, you may want to change a single control to use a different class than the
default. For example, a STRING control that displays a variable defaults to a Java String
control and you may want it to be plain HTML text. You can change this on a control-by-
control basis on the Individual Control Overrides Classes Tab. In this example, you are
not actually overriding the class, but merely specifying a different class to use for the

control.

1. From the Procedure Properties window, press the Internet Options button.

2. Select the Controls tab.

3. Highlight the control in the Individual Control Options list, then press the
Properties button.

4. Select the Classes tab, and check the Override Default Class box.

Select the class to use from the drop-down list. You do not need to provide the
Header File and Implementation files.

Web Application Design Considerations 217

You can use the same technique to change a JavalmageControl to an HTML
control.

API calls

Windows API calls are tied to the machine on which an application is running. Web-
enabled applications are actually running on the server machine and a representation is
sent to the client in the form of HTML pages. Therefore, any API calls in your application
execute on the server machine.

In many cases, this will not be appropriate. For example, playing a sound file on a server
is generally not a good idea and the user running the application won't hear it. In those
cases, you should inhibit the call when the application is running over the web.

If you are making the call with a BUTTON control, use the Individual Control Options to
"Hide if launched from Browser." (Internet Options Controls).

If you are making the call in source code, enclose the function call inside a conditional
structure. For example:

IF NOT WebServer.Active I Check if running over the web
SoundFile="fanfare.wav"
sndPlaySound(SoundFile, 1)
END

In other cases, it will be appropriate to make the call on the server. For example, a
procedure which uses MAPI to send email from the server based on an event. In those
cases, you should make sure the call works properly on the server. It should behave the
same way when executed over the web.

In a similar manner, reports without Print Preview enabled will print on the server. This
may be appropriate in some cases, but it is important to understand its behavior.

218 Internet Application Guide

Security Considerations

There are two methods of implementing security in your web applications.

* Implementing security into the underlying application.
* Restricting access (Password protecting) a procedure when it is started over the
Web.

The first method—implementing security into the original application—requires no
additional consideration in your Web application. The original security enforcement in the
Windows version should work the same way in your Web application.

The second method—restricting access when running over the Web—uses the browser’s
built-in authentication.

Using Passwords

The Internet Procedure Extension template’s Password protection uses the browser's
built-in HTTP authentication support. When a password protected procedure is called, the
browser's authentication window displays. You do not need to create a window to collect
login information. Password protection is based on an area, a username and a password.
The area is the protected procedure.

When a browser requests a password protected area, it gets a response back requesting
the username and password for the area. By default, the area name is created from the
title of the window, and the name of the procedure. This is stored in the
WebWindow.AuthorizeArea property. The browser prompts the user for a user name,
and a password. These are then sent to the program for validation. If the program
accepts the password (i.e., it RETURNs TRUE from the WebWindow.ValidatePassword
method), the new page is displayed, otherwise the browser prompts again. After three
attempts the browser displays a message informing the user that access is denied. This
page automatically returns the user to the last active place in the program.

If the page has already been visited in the current session the browser will normally
supply the user name and the password without prompting the user. This feature is built-
in to most browsers.

Two levels of password support are built into the procedure template. The simplest
method is to select restricted access and specify a single password or a variable. This is
automatically checked by the template, and ignores the username. If you use a variable,
it compares the password entered with the variable’s current value.

Web Application Design Considerations 219

The more advanced method is to override the WebWindow.ValidatePassword method by
entering code into the Internet- Password Validation Code Section embed point. This
embed point is inside a method with two parameters: UserName and Password, which it
receives from the browser. You should return TRUE if the password is valid, and FALSE
if it is not valid. This allows you to look up the information in a file, or use any other
method you choose to validate the password.

Example:

USE:UserID = UserName

IF Access:UserList.Fetch(USE:UserIDKEY)
RETURN(False)

END

IF USE:UserPassword = Password
RETURN(True)

Else
RETURN(False)

END

Optionally, you can change the message displayed on the browser’s password dialog by
assigning a value to WebWindow.AuthorizeArea in the Internet-After Initializing the
window object embed point.

220 Internet Application Guide

Using Embedded HTML

One of the most powerful features of the IBC Templates is the ability to embed HTML
code in the HTML pages which are output by the web-enabled application running via the
Application Broker. When you embed HTML code (using the special embed points added
by the templates), it is inserted at the specified location in the HTML file returned to the
browser which executed the application.

There are two methods for embedding HTML.:

1. In the Internet Procedure Extension Template, Individual Control Overrides. This
provides two text entry controls into which you write HTML code.

2. Using the Dynamic HTML Code Template or the Static HTML Code Template in
one of the Internet embed points. These templates use the virtual method
Target.WriteLn to write to the delivered HTML file at runtime. The Static HTML
code template allows you to embed HTML code exactly as written. The Dynamic
HTML template allows you to combine HTML code with variables from your
application.

Optionally, you can use the Target.WriteLn method yourself in embedded source code
in any of the appropriate embed points.

These Embed points are identified by INTERNET at the beginning of the description.
Using the Target.WriteLn method in one of these embed points allows you to add any
HTML code at various points in the HTML document delivered to the user at runtime.
This code does not affect the application when it is running as a Windows program.

For example, if you want a block of text to appear on the bottom of the page delivered by
the Application Broker for a procedure in your application, you would insert the Static
HTML Code Template at the Internet, before the closing </BODY> tag embed point in the
Application Generator and specify the HTML code. This HTML code is added to the
resulting HTML page delivered to a browser client.

You can use the virtual method Target._WritelLn in any the embed points where the
Dynamic HTML Code Template and the Static HTML Code Template are available.

Example:
Insert this code in the Internet, before the closing </BODY> tag embed:

Target _WriteLn("<<p>Copyright 2000, SoftVelocity™
Incorporated, All Rights Reserved.<</p>")

Web Application Design Considerations 221

When hand-coding Clarion source to write HTML code, remember to handle special
characters, such as <, by using two characters in succession. If you use the Static HTML
Code Template, this is handled automatically.

One benefit of using Clarion code in these embed points is the ability to control the HTML
code you want to write. The example below shows a simple method of displaying a
random hyperlink:

EXECUTE RANDOM(1,5)

Target_WriteLn("<Visit SoftVelocity<")
Target.WriteLn("<Visit ClarionOnline<")
Target_WriteLn("<Visit lceTips<")
Target.WriteLn("<Visit the Finatics<")
Target.WriteLn("<SoftVelocity News<%)

END

Using references to files in embedded HTML code

When using references to files in embedded HTML code, remember that each session
has its own temporary directory. Therefore, /PUBLIC is never the current directory for
delivered web pages. This means that you must reference the location of files. There are
two ways to do this.

If you are referencing an image in HTML code, you must indicate the location of the
image file. If you are deploying under the EXE version of the Application Broker you can
prefix the filename with a leading forward slash and deploy the image to the /PUBLIC
directory. For example .

If you are using the ISAPI DLL version of the Application Broker, you must use the
SELF.FILES.GetAlias() method to determine the virtual path to the file.

For example:

Target WriteLN("<<IMG SRC="" & SELF.Files.CGetAlias("mygif.gif") &
III>I)

would find the mygif.gif file in any directory exposed to the server application.

The preferred method is to use the SELF.Files.GetAlias() method because it works under
both the ISAPI DLL and the EXE version of the application broker.

To use your own Java Applet class files, use the CODEBASE-= tag as shown below.

222

Internet Application Guide

If you are deploying under the EXE version of the Application Broker you can reference
the <CODEBASE> as a leading forward slash and deploy the .CLASS file to the /PUBLIC
directory. If you are using the ISAPI DLL version of the Application Broker, you must use
the SELF.FILES.GetAlias() method to determine the virtual path to use for the
<CODEBASE>.

Embedded HTML Examples:
1 HTML code

<applet codebase="/" code="TickerTape.class” width="500" height="32">
</applet>

1 Embedded Source Examples (in any Internet Embed Point)

Target_WriteLN(*<7)
Target._Writeln(“<<applet *)

Target_WriteIn(“Codebase = *““ & SELF.FILES.GETAlias() & “* *)
Target_Writeln(“code="TickerTape.class”>")
Target_Writeln(“<</applet>7)

In an APPLET HTMLtag, the CODEBASE attribute must precede the code attribute. This
is listed in the wrong order in some HTML references. HTML code with the attributes in
the wrong order can cause the applet to fail (due to a "Not Found" error).

Web Application Design Considerations 223

Implementing Help in your Web Application

Using

References are made to HTML pages based on the current window’s Help ID. This is
constructed in one of two ways: Using a Base Document with Mid-Page anchors, or
Using individual help Documents. This is specified in the Global Application Extension
Template or in the Procedure Extension template’s Internet Options.

a Base Document with Mid-Page anchors

This method uses a single web page with mid-page bookmarks or anchors. The call to
the page is constructed by appending the Help ID to the base page name with a # symbol
between them (e.g., HELP.HTM#IDNAME). Clicking on the Help button causes the page
to open and scroll to the appropriate anchor. In the example below, the first window has a
HelplID of ~FirstWindowID. This means that the Help button will call

HelpFile. HTM#FirstWindowlID.

Example:

<html>
<head>

<title>Example Help Document</title>
</head>

<body background="bgrnd.gif” bgcolor="#FFFFFF’>
<hl align="center”>Program Help </h1>
Introductory Text......

Introductory Text......

Introductory Text......

Introductory Text......

<h2 align="center”>Help For First Window</h2>
Explanation of how this procedure works
Explanation of how this procedure works
Explanation of how this procedure works
Explanation of how this procedure works

<h2 align="center”>Help For Second
Window</h2>

Explanation of how this procedure works
Explanation of how this procedure works
Explanation of how this procedure works
Explanation of how this procedure works

</body>

</html>

224 Internet Application Guide

Using individual help Documents

This method uses a single web page for each window. The call to the page is constructed
by prepending the Help ID to .HTM extension. Clicking on the Help button causes the
page to open.

Both methods open the page in a new browser window named “_HELP”. If you open your
application inside a frame set where one of the frames is named “_HELP”, the help page
opens in that frame.

A web-enabled application executed by the Application Broker creates HTML files in the
/PUBLIC directory. These pages are sent to the browser which started the application
and refreshed and re-sent when the client interacts with the application.

Web Application Design Considerations 225

Windows Controls and their HTML Equivalents

A web-enabled application executed by the Application Broker delivers HTML to the
browser which started the application and refreshed and re-sent as the user interacts
with the Web page representing the application.

Certain controls translate easily to HTML, while others are created as JAVA classes
using the Clarion Java Support Library. Certain windows controls have not been fully
implemented in this release.

The list below shows the standard windows controls supported by Clarion and the
equivalent created by an Internet Connect web-enabled application.

STRING (a variable string)
Displays as a Java String Control, which updates dynamically.

STRING (a text string)

Displays as text by default. By setting individual control overrides, it can display as a Java
String Control, which updates dynamically. If you are updating the STRING in your
application using a property assignment, you should specify that the string update
dynamically.

IMAGE

A static image displays as an HTML image with its source specified as the
graphic file in your application. By setting individual control overrides, it can display as a
Java Image Control, which updates dynamically.

REGION

Partial support. A REGION that covers an IMAGE control and has functionality
implemented in its EVENT:Accepted creates the HTML image as an image map
(USEMAP=) with the functionality of the region associated with that portion of the image.

LINE
Not supported--use Embedded HTML to display a Horizontal Rule <HR> or an image
.

BOX
Not supported--use Embedded HTML to display an image .

ELLIPSE
Not supported--use Embedded HTML to display an image .

226

Internet Application Guide

ENTRY
Created as an HTML entry field <INPUT TYPE=TEXT VALUE = value in field >. Entry
patterns are not supported.

BUTTON

Created as an <INPUT TYPE=SUBMIT > unless it has an ICON, then a Java button is
created which displays the Icon. Icons displayed on Java buttons must be deployed to
the /PUBLIC directory.

PROMPT
Displays as text.

OPTION

Created as an HTML <OPTION>. If an OPTION has the BOXED attribute, then it is
implemented in HTML as a <TABLE> with the border specified in the Global or
Procedure options for OPTIONS.

CHECK
Created as an HTML checkbox <INPUT TYPE=CHECKBOX VALUE = value in field >

GROUP
If a GROUP has the BOXED attribute, then it is implemented in HTML as a <TABLE>
with the border specified in the Global or Procedure options for GROUPs.

LIST

Creates a Java Listbox which supports most of the LIST attributes, including conditional
colors and icons. Icons must be deployed to the /PUBLIC directory. When the Java
Listbox has focus in the browser, the navigation keys are supported (arrow-up, page-up,
etc.). If the LIST has a locator, the Java Listbox supports it when it has focus. Double-
click handling is also supported. Drag-and-drop, edit-in-place, and right-click popups are
not supported.

Tree Creates a Java Tree Listbox. Supports all attributes, including conditional
colors and icons. Icons must be deployed to the /PUBLIC directory.

FileDropCombo
Created as an HTML drop-down (<SELECT> structure) with the values
from the file created as Options. This does not support multiple columns.
Optionally, you can create as a Java Non-drop list which supports
multiple columns.

DroplList
Created as an HTML drop-down (<SELECT> structure). This does not
support multiple columns. Optionally, you can create as a Java Non-drop
list which supports multiple columns.

Web Application Design Considerations 227

DropCombo
Created as an HTML entry field <INPUT TYPE=TEXT VALUE = value in field >

COMBO
Created as an HTML entry field <INPUT TYPE=TEXT VALUE = value in field >.

SPIN
Created as an HTML entry field <INPUT TYPE=TEXT VALUE = value in field >.

TEXT
Created as an HTML Text field <TEXTAREA >.

CUSTOM (.VBX)
Not supported.

MENU
Creates a list of hyperlinks which display across the top of the HTML page or to the left
of the window, as specified in the Global Internet Options.

ITEM
See MENU.

RADIO
Creates an HTML Radio button.

APPLICATION
HTML <TABLE> inside an HTML page.

WINDOW
HTML <TABLE> inside an HTML page.

REPORT

If Print Preview is enabled, this creates a series of HTML pages with Java navigation
buttons (Next page, Previous page, etc.). If Preview is not enabled, the report will print on
the server.

HEADER, FOOTER, BREAK, FORM, DETAIL
See REPORT.

OLE
Not Supported (except via embedding an ActiveX in Embedded HTML).

PROGRESS
Not supported.

228 Internet Application Guide

SHEET
Created as JAVA Tab controls.

TAB
Created as JAVA Tab controls.

PANEL
Not supported. You may use a GROUP with the appropriate borderwidth to provide a
similar appearance.

TOOLBAR
Created as a row in an HTML <TABLE>. Controls on the toolbar are placed as specified
in the Global or procedure Internet Options.

Web Application Design Considerations

229

Hand Coded Applications

About This Section

The Internet Connect Templates generate the code necessary to Web-enable Clarion
applications. However, you do not have to use the Internet Connect Templates to Web-

enable your programs.

That is, you can use the IBC Library to Web-enable your hand coded programs. This
chapter presents a minimal “Hello Web” hand coded program that uses the IBC Library.
This chapter also discusses the IBC Library’s project system requirements.

The easiest way to learn to use the IBC Library within hand coded programs is to Web-
enable an application with the Internet Connect Templates, then study the template

generated code.

HelloWeb Example Program

The following hybrid Web/Windows program displays a single window or Web page with
a “Hello Web” message and a “Goodbye Web” button to shut down the program.

Hel loWeb
LinkBaseClasses

PROGRAM
EQUATE(1)

BaseClassDIlIMode EQUATE(O)
INCLUDE(" ICBROKER. INC™)
INCLUDE(" ICWINDOW. INC™)
INCLUDE("ICSTD.EQU™)

MAP
Hello
WebControlFactory(SIGNED) ,*WebControlClass
MODULE(™ ™)
SetWebActiveFrame(<*WebFrameClass>)
END
END
Broker BrokerClass
HtmIManager HtmlIClass
JavaEvents JslEventsClass
WebServer WebServerClass

WebFilesManager WebFilesClass

ICServerWin WINDOW,AT(-1,-1,0,0)
END
CODE
SetWebActiveFrame()

WebFilesManager._Init(1l, *%)

TEnable LINK on CLASS declarations
Iso linker can find implementation
I(.clw) files

TActivate DLL on CLASS declarations
Ifor required 32-bit dereference
IDeclare BrokerClass

IDeclare WebWindowClass

IDeclare IC standard EQUATEs

IPrototype Hello procedure
IPrototype WebControlFactory

IPrototype SetWebActiveFrame

IDeclare Broker object

IDeclare HtmIManager object
IDeclare JavaEvents object
IDeclare WebServer object

IDeclare WebFilesManager object
IDeclare “invisible” server window

ITell IBC objects (WebWindow) there
'is no active APPLICATION frame
IInitialize WebFilesManager

230 Internet Application Guide

JavaEvents.Init I'Initialize JavakEvents
Broker._Init("HelloWeb®", WebFilesManager) IInitialize Broker
HtmIManager . Init(WebFilesManager) IInitialize HtmlManager
WebServer. Init(Broker,"",600,"",WebFilesManager) !Initialize WebServer
IF (WebServer.GetlInternetEnabled()) 11¥ launched by Application Broker
OPEN(ICServerWin) I open “invisible” window on server
ACCEPT
IF (EVENT() = EVENT:OpenWindow)
WebServer .Connect IEstablish channel to App Broker
Hello ICall Hello (Web mode)
BREAK
END
END
ELSE 11f not launched by App Broker
Hello I call Hello (Windows mode)
END
WebServer .Kill IShut down WebServer object
HtmIManager .Kill 1Shut down HtmIManager object
Broker KillQ) IShut down Broker object
JavaEvents _Kill I1Shut down JavaEvents object
WebFilesManager _Kill IShut down WebFilesManager object

Hello PROCEDURE

Window WINDOW,AT(, ,139,59),GRAY,DOUBLE Ideclare window
STRING("Hello Web!*"),AT(51,14),USE(?Hello) ! with Hello Web string
BUTTON("Goodbye Web!"),AT(39,31),USE(?Bye) ! and Goodbye Web button

END
WebWindow WebWindowClass IDeclare WebWindow object
CODE
OPEN(window) 10pen the window
WebWindow. Init(WebServer ,HtmIManager) Ilnitialize WebWindow object by
I gathering info about window
! and its controls
ACCEPT
IF WebWindow.TakeEvent() THEN BREAK. IWeb event handling:
I handles all events necessary
I to respond to Client request
I e.g. generate new HTML page
IF EVENT() = EVENT:Accepted TUsual Windows event handling
POST(Event:CloseWindow) IClose window on ?Bye button
END
END
CLOSE(window) IClose the window
WebWindow_Kill I1Shut down WebWindow object

RETURN

Web Application Design Considerations 231

WebControlFactory PROCEDURE(SIGNED Type) IlInstantiate WebControl objects
NewControl &WebControlClass I requested by WebWindow object
CODE

CASE (Type)
OF CREATE:ClientArea
NewControl &= NEW WebClientAreaClass
OF CREATE:String
NewControl &= NEW WebHtmlStringClass
OF CREATE:TextButton
NewControl &= NEW WebHtmlButtonClass
END
IF (~NewControl &= NULL)
NewControl . IsDynamic = TRUE
END
RETURN NewControl

232 Internet Application Guide

Hand Coded Project Considerations

The IBC Library requires several components in order to successfully compile and link.
Specify the following components with the Project Editor dialog. See The Project System
in the Online User’s Guide for more information.

ICSTD.CLW

ICSTD.CLW contains a variety of procedures that are shared by several different IBC
objects. These procedures are prototyped in ICSTD.INC. These procedures are not
methods of a CLASS, and therefore cannot be identified to the linker by the LINK
attribute like the IBC methods are. To locate these procedures for the linker, you must
add the ICSTD.CLW file to the External source files branch of the project tree.
ICSTD.CLW is installed by default to the Clarion LIBSRC\ directory.

DOS Database Driver

The IBC Library objects use the DOS Database Driver to write the HTML code and JSL
data requested by Client browsers. You must add the DOS driver to the Database driver
libraries branch of the Project tree to resolve IBC references to DOS driver procedures.

ASCII Database Driver

The IBC Library objects use the ASCII Database Driver to process reports. You must add
the ASCII driver to the Database driver libraries branch of the Project tree to resolve IBC
references to ASCII driver procedures.

C60HTMx.LIB

C60HTMNx.LIB contains a variety of compiled objects that are shared by several different
IBC objects. These executable objects are prototyped in ICSTD.INC. To locate these
executables for the linker, you must add the C60HTMXx.LIB file to the Library, object,
and resource files branch of the project tree.

IBC Library Quick Reference 233

12 - IBC Library Quick Reference

The Internet Connect Templates rely heavily on the Internet Builder Class (IBC) Library to
accomplish the tasks necessary to create a hybrid Web/Windows application. This
chapter briefly documents the IBC Library methods and properties referenced by the
Internet Connect Templates, as well as other IBC Library methods and properties you are
likely to use during the course of developing your hybrid Web/Windows application.

For complete documentation of these items and many more, see the IBC Library
Reference. All the IBC Library methods and properties are fully documented in the IBC
Library Reference. The IBC Library Reference is available in electronic .PDF format on
the SoftVelocity web site.

234

Internet Application Guide

Classes and Their Template Generated Objects

The Internet Connect templates instantiate objects from the IBC Library. The object
names are usually similar to the corresponding class names, but they are not exactly the
same. As a result, your Web-enabled application’s generated code may contain

statements similar to these:

Broker.Init
MainFrame.TakeEvent

I1C:CurFrame.CopyControlsToWindow

WebWindow.OptionBorderWidth = 2

IC:CurControl.Init

IC:CurControl.DisabledAction

DISABLE:Show

WebMenubar .SetBackground(16711680, %)
HtmlPreview. Init(WebServer, HtmlManager, PrintPreviewQueue)

The various IBC classes and their template instantiations are listed below so you can
more easily identify IBC objects in your application’s generated code. The template
generated objects are also listed beside the class name in the Quick Reference section

of this chapter.

Internet Builder Class
BrokerClass

HtmlClass
JslEventsClass
TextOutputClass
HttpClass
WebFilesClass

WebServerClass
WebClientManagerClass
WebFrameClass
WebWindowClass
WebControlClass
WebCaptionClass
WebClientAreaClass
WebMenubarClass
WebToolbarClass
WebReportClass

Template Generated Object
Broker

HtmIManager

JavaEvents

Target

Broker.Http

WebFilesManager, Broker.Files,
HtmIManager.Files,
Broker.Http.Files,
JavaEvents.Files, WebServer.Files,
WebWindow.Files, andTarget.Files
WebServer

Broker.CurClient

MainFrame and IC:CurFrame
WebWindow

IC:CurControl

WebCaption

WebClientArea

WebMenubar

WebToolbar

HtmlIPreview

IBC Library Quick Reference 235

Quick Reference

BrokerClass (Broker)

Init (initialize the BrokerClass object)
Kill (shut down the BrokerClass object)
ServerName (server identifier)

WebClientManagerClass (Broker.CurClient)
IP (client IP address)

HtmlIClass (HtmIManager)

Init (initialize the HtmIClass object)
Kill (shut down the HtmIClass object)

JslEventsClass (JavaEvents)

Init (initialize the JslEventsClass object)
Kill (shut down the JslEventsClass object)

TextOutputClass (HtmIManager or Target)

Writeln (write one line of text)

HttpClass (Broker.Http)

GetCookie (get cookie from client)
SetCookie (get cookie from client)
SetProcName (set protected area hame)
SetProgName (set server name)

WebFilesClass (WebFilesManager or Files)

GetAlias (return HTML alias for file)

Init (initialize the WebFilesClass object)

Kill (shut down the WebFilesClass object)
SelectTarget (set public or secure channel)

236

Internet Application Guide

WebServerClass (WebServer)

Active (Web mode or Windows mode)

CommandLine (command line parameters)

Connect (open communication channel to Broker)
Init (initialize the WebServerClass object)
JavalLibraryPath (Java Support Library location)

Kill (shut down the WebServerClass object)
PageToReturnTo (return URL)

ProgramName (Server pathname)

Quit (shut down the server program)
SetSendWholePage (force full page refresh)
SetNewPageDisable (suppress outgoing Web pages)
TimeOut (period of inactivity after which to shut down)

WebFrameClass (MainFrame or IC:CurFrame)

CopyControlsToWindow (merge global controls to local window)
FrameWindow (reference to APPLICATION)
TakeEvent (handle browser and ACCEPT loop events)

WebWindowBaseClass (WebWindow)
AllowJava (generate or suppress JavaScript)
BorderWidth (Web page border width)

Closelmage (close button graphic)

CreateCaption (include a titlebar on the Web page)
CreateClose (include a close button on the Web page)
DisabledAction (default HTML for disabled controls)
FormatBorderWidth (HTML table cell border width)
GroupBorderWidth (group box border width)
MenubarType (menu placement)
OptionBorderWidth (option box border width)
SheetBorderWidth (sheet border width)

IBC Library Quick Reference 237

WebWindowClass (WebWindow)

AuthorizeArea (nhame of password protected Web page)
HelpDocument (HTML help document)

HelpEnabled (HTML help enabled flag)

HelpRelative (remote or local help document)

IsSecure (public or secure channel)

AddControl (add control information)

CreateHtmlIPage (generate HTML for a window)
GetControlinfo (return control reference)
GetToolbarMode (return toolbar entity)

Init (initialize the WebWindowClass object)

Kill (shut down the WebWindowClass object)
MenubarType (menu placement)

SetBackground (set Web page background)
SetFormatOptions (set Web page scale and alignment)
SetHelpDocument (enable single document Web page help)
SetHelpURL (enable multiple document Web page help)
SetPageBackground (set Web page background)
SetPassword (require password)

SetSplash (make this a splash window)

SetTimer (set Web page timer and action)
SuppressControl (omit control from Web page)
TakeEvent (handle browser and ACCEPT loop events)
ValidatePassword (verify password)

WebControlClass (IC:CurControl)

DisabledAction (HTML for disabled control)
CreateHtml (write HTML for control and its attributes)
Feq (control number)

ParentFeq (parent control number)

Init (initialize the WebControlClass object)

Kill (shut down the WebControlClass object)
SetBorderWidth (set BorderWidth)

WebJavaStringClass (IC:CurControl)
SetAutoSpotLink (set live hypertext links)

WebHtmlimageClass (IC:CurControl)
SetDescription (set alternative text for Web image)

WebJavalistClass (IC:CurControl)

ResetFromQueue (record changes to Server LIST queue)
SetAutoSpotLink (set live hypertext links)

SetEventAction (associate browser action with control event)
SetQueue (set the data source queue)

238

Internet Application Guide

WebCaptionClass (WebCaption)

Alignment (text justification)

SetBackground (set Web page caption background)
SetFont (set Web page caption font)

WebClientAreaClass (WebClientArea)
SetBackground (set Web page client area background)

WebMenubarClass (WebMenuBar)
SetBackground (set Web page menu area background)

WebToolbarClass (WebToolbar)
SetBackground (set Web page toolbar area background)

WebReportClass (HtmIPreview)

Init (initialize the WebReportClass object)

Kill (shut down the WebReportClass object)
Preview (generate HTML to represent the report)

Glossary and Index 239

Glossary

All definitions are general terms, except where otherwise indicated. The context for definitions
marked (Clarion) pertain specifically to the Clarion language or the Clarion development
environment.

applet A small, single purpose application; applets are not necessarily stand
alone executable programs. Small programs written in Java are
commonly called applets. In HTML, the <APPLET> tag indicates a Java
applet.

Application Broker (Clarion) An Application Broker is required to run Clarion hybrid
Web/Windows applications. The Application Broker launches a hybrid
Web/Windows application on the Internet server and refreshes the
Clarion Java Support Library (JSL) on the browser. The Application
Broker then organizes the message traffic into a remote computing
session, routing events produced by the Java Support Library to the
hybrid Web/Windows application and routing HTML scripts produced by
the application to the browser.

Broker (Clarion) See Application Broker.

Client (Clarion) An internet browser that launches a hybrid Web/Windows
application with the Application Broker.

Cookie Information stored on a client machine at the request of a server.

default button A command button which is activated by default when the user presses
the ENTER key.

Disabled A window, menu, or control visible but prevented from gaining focus.

Encryption The representation of data in scrambled or encrypted form, such that an

unauthorized user may not access the data in an intelligible format.

font The family name of related type face files. For example, “Times New
Roman” is the font name, and “Times New Roman plain,” “Times New
Roman lItalic,” “Times New Roman Bold,” and “Times New Roman Bold
Italic” are the styles, which are stored in separate files.

font style Character formatting applied to a font face, such as bold, italic, or bold
italic.

240

Internet Application Guide

GIF image

global toolbar

Hide

HTML

HTTP

Graphics Interchange File (GIF) format; an image format popularized by
CompuServe. Generally acknowledged to offer the best compression
ration for 256 color or less images. Attention: should you utilize the word
“GIF” anywhere within an application or program, you must add a
trademark notice: “GIF (Graphics Interchange Format) is a trademark of
CompuServe Information Services.”

A horizontal or vertically arranged group of command buttons, and/or
other controls, generally remaining accessible the entire time a program
executes.

Prevent a control or window from displaying on screen; the control exists
but is not seen by the end user.

Hyper-Text Markup Language—the language internet browsers use to
format and display Web pages.

Hyper-Text Transfer Protocol—the symbols that internet browsers and
servers use to transmit and receive HTML.

Hybrid Web/Windows Application

icon

include file

Hybrid Web/Windows Applications look like standard Windows
applications when launched under Windows, but work as Internet servers
when launched by the Clarion Application Broker. Hybrid Web/Windows
applications can then be manipulated from any Java enabled browser
such as Microsoft Internet Explorer or Netscape Navigator.

A graphical representation of a physical object in the system, such as a
printer. Also, any small image representing an action, concept or
program, as when an icon appears on a command button. The normal
icon file format carries the .ICO extension; one of its main features is
built-in support for transparency. This enables you to display a small
picture without obliterating the background.

An external source file read and preprocessed at compile time. In
Clarion, the Equates and other files in the LIBSRC subdirectory are the
default include files.

Internet Developer’s Kit

(Clarion) The Internet Developer’s Kit is an accessory product that can
be used with the Clarion Standard, Professional, or Enterprise Editions to
develop new hybrid Web/Windows Applications or to Web-enable
existing Clarion applications. A Developer Version of the Application
Broker which permits as many as five connections is included with the
Internet Developer’s Kit.

Glossary and Index

241

Java Support Library (Clarion) The Java Support Library (JSL) is a small set of Java classes

JPG image

JSL data

(less than 200K) that implement a wide variey of Windows-like controls in
an Internet Browser. The JSL generates events from the internet browser
and processes messages from the internet server.

A true-color graphics file format featuring 24-bit color storage. It usually
provides for adjustable loss compression, which allows for greater
compression but loss of some resolution.

The protocol and data a hybrid Web/Windows application sends to the
internet browser for processing by the Java Support Library (JSL). The
hybrid Web/Windows application sends JSL data to the internet browser
to accomplish very fast partial Web page updates.

Remote Computing Session

Reusable Client

Server

Session Router

timer

(Clarion) The Clarion Application Broker organizes events produced by
the Java Support Library (JSL) and HTML pages produced by hybrid
Web/Windows applications into a remote computing session by
maintaining the status of the dialog between the browser and server.

(Clarion) The Java Support Library (JSL) is a small set of Java classes
(less than 200K) that generates events from the internet browser and
processes messages from the internet server. This thin client is reused
by every Clarion hybrid Web/Windows application, thereby minimizing
connect time and local browser resource requirements (disk space and
RAM).

(Clarion) A hybrid Web/Windows application launched by the Application
Broker at the request of an internet browser.

(Clarion) The Session Router distributes remote computing sessions to
multiple Application Brokers over the Internet, when high popularity or
demand requires the deployment of additional Internet servers. The
Session Router is available separately.

A Windows resource which can automatically send a message to an
application at pre-defined intervals.

Ultra-thin Reusable Client

(Clarion) The Java Support Library (JSL) is a small set of Java classes
(less than 200K) that generates events from the internet browser and
processes messages from the internet server. This thin client is reused
by every Clarion hybrid Web/Windows application, thereby minimizing
connect time and local browser resource requirements (disk space and
RAM).

242 Internet Application Guide

Glossary and Index

243

Index:

Adding conditional HTMLccoe..e. 159
AddServerProperty Code Template.......... 53
apPIet....cc 237
Application Broker............cccovvveeeeennn. 28, 237
Background Colorcccceevvvcviiinenenenn, 142
Background Imageccccceeevvevviinennnnnn, 142
bandwidth..........cccovviiiiii, 138
BOX.DtM .o, 87
12T 0] =] 237
Button.htmcoooviiiiee e, 88
CenteriNg.....uueeeeieee it 164
Check.htm ..., 90
Clarion.CAB........cooiiiiieee e 162
Clarion.ZIPccooceviciiieieiee e 162
ClasSSesS.....uvevieiiiiie et 181
Classes Tabcccccvvviieiiiiiiiic e, 35
CleNt ..eeeeee e 237
Combo.htm......cceeiii 92
control overrides........ccccccveeeviiiiiiieeeenn, 193
(070 T0] (= I 33, 237
CooKieS ..ccoeeeiieiii 52
default button...........cccc, 237
DeleteVisitorProcess.........cccouvveeeeeeeeeninnnes 69
Detail.htm ..., 92
disabled.......ccccociiviiiii 237
dynamic HTMLcccciieeeeee e, 50
Dynamic HTMLcccovveeeeeeeeciieeeeeee, 157
Dynamic HTML code template.................. 26
Dynamic HTML Code Template................ 50
EMAL...ceiiiiiiie 24
Email String......ccooovveeeeniiiiiieec e 79
Email.String.htm ... 92
ENCIYPLON ..eeiiiiiiiii e 237
Entry.htm ... 92
EVENLS ..o 40
example web-enabled application............. 15
FONE oo 237
fontstyle ..., 237
Full Refresh ..o, 138
GetCookie Code Template...........ccccee...... 51
GetServerProperty Code Template 53
GIF IMage....cccoviiiiieiiiiie e 238
global extensioncccceeieiiiieiiniieenn, 16
Global Internet Application Extension..... 175

Global ObjJectS......coovciviiiieiiie e, 34

global toolbar..........cceeeeeiiiiiiiiin 238
Grid.NtM .. 94
Group.htM......ooooiiieee e 95
Header filecccovveeeiie e 185
hide ... 238
Hotstring.htm ..., 97
HTML e 39, 238
HTTP e 238
Hybrid Web/Windows Application 238
Hyperlink String ..o 79
Hyperlink String with verbose text............. 80
IC:CurControl.DisabledAction 193
oo] o IO PRTPT 238
Image.htm......ccoceeeiiiiiiee e, 97
Implementation filecccccccooe e, 185
include file......ccooviieeeiiie e 238
Internet Application Extension Template.142
Internet CoNNECt..........cccvvvveeeieeeieeeeeen 7
Internet Developer’s Kit (Clarion) 238
Internet Procedure Extension Template..139
tem.htm.. ... 98
Java Button...........cccoeeeeii 163
Java Support Libraryccccccoviiiiiienenn. 162
Java Support Library (Clarion) 239
JPG iMage....cevveveeiiiiiieieieee e 239
JSL data ...vvvveeiiiiiee e 239
LiSthtm ..o, 98
[0gIN WINAOWvvviieeieeeieciiiieeee e 152
MDI SettingSccvvvveeieeeee e e 31
Menu.htm.....ccccooiii e, 98
Menubar.htmccccceeiiiiii e 100
META TagsS.....ccovveeeieeeieiiireeeee e 77
Panel.htmcccocoeiiiiii 101
Partial Refresh........cccccoviiiis 138
password protectioncccceeeeeiiiinnee. 168
Prompt.htm ... 102
Property ..o 41
Query.htM.......ccooviii e 102
Radio.htm ..o 103
RedirectToPage Code Template............... 54
Refresh when changedc..cccoovvininee. 40
Region.htm ... 104
Remote Computing Session................... 239
Reusable Client (Clarion)cccceeeneee. 239
SCHPLOtM Lo 86

244 Internet Application Guide
Secure Socket Layer......cccccoevvvcevvveennnnnnn, 191 Ultra-thin Reusable Client 239
SELF.FILES.GETAIlaS.......cccccoevvvreennnn 211 UsiNg COOKIESvvveeiviiieeeciieee e 152
SELF.FILES.GetAlias()cooovvvveeeeenannn. 220 Web Application Extension..............cccce..... 29
SEIVEN it 239 Web Procedure Extension..............cccccee.... 36
SEeSSION ROULETcveiiiiiieiiiiiee e 239 WEDBBUIIAENevveeeiiiiiiee e 7
Y= (01010 (=T 154 WebCaption. Alignmentcccccceeveivvvennnnn. 182
SetCookie Code Template..........cccccee...... 51 WebCaption.SetBackground................... 182
Sheet.all.htmccoovei e, 105 WebCaption.SetFont........cccccccoon. 182,183
Sheet.one.htm. ..., 105 WebClientArea.SetBackground....... 185, 199
Sheettwo.htm ..., 105 Web-enabling a Clarion application 146
SKeletoNcooieee e 23 WebFilesManager.nit............cccceveveeeeenennnn. 180
SKeletoNS ... 81 WebGrdEXteNSsioncccccceveevviiiiiieeeeennnn. 54
SKeletons........ceiiiiiiiiiiieee 36,71 WebHitManager...........cccccceeeeeiiiiiiiiieeeenn, 55
SPINAIM L 105 WebHitProc extension template................. 56
Splash.htm ..., 107 WebJavaButtonClassccccccoeviinennnee. 208
Sstring.htMm ..., 108 WebMenubar.SetBackground.............. 183, 198
Static HTML ..o 158 WebServer.CommandLine...................... 214
Static HTML Code Template..................... 50 WebServer.nitccccccoeveccuvieeeee e eeeiineeen, See
StaticHTML code template..........ccccceeee... 27 WebServer.JavaClassPath............c..cccuveeee 181
String.htm ..o, 108 WebServer.PagetoReturnTo............cceeuvvnee. 180
Tab.all.htm......cccoceveeiii e, 108 WebServer.TimeOut.........cccvvveeeeeeeeeeeeeenen 180
Tab.one.htmccccoveveiiii e, 108 WebShowHits extensioncccvveeee... 58
Table.htm ... 111 WebToolbar.SetBackground 184
Target.WriteLn......ccccoviieiiiiiinee 50, 203 WebWindow.CreateCaption 182
templates.......ccuveevieiei 175 WebWindow.DisabledAction 188
Texthtm ..., 114 WebWindow.GroupBorderWidth 179
L1110 T=] PPN 239 WebWindow.OptionBorderWidth.................. 178
Toolbar.htmccceeeeeeiii e, 115 WebWindow.SetBackground 176
TSSClPt e 74 WebWindow.SetHelpDocument 177
TSSCRIPT WebWindow.SetHelpURLc.ccveiveiinennns 177

General......cccccviiii 77 WebWindow.SetPageBackground........ 176, 186

INCIUAES .oeveeeeeeee e, 76 WebWindow.SheetBorderWidth................... 178

RepeatSccvvveiiiiiiiiie e 76 WINdow SettingsS........cvvevvviiieeeiiiiieeeiien. 30
TSSCRIPT ..oovieiieeee e 7,23,25 WINdow.HTMcooviiiiiee e 82

Basic Structureccccceveeeeviiiiiiiieeeeen, 74 WHEEIN oo 21

PatChing......ccooeeiiiiiiieen 75

	Introduction
	What is WebBuilder and Internet Connect?
	Clarion Internet Technologies and the Clarion Development En
	What You’ll Find in this Book
	Where to Find More Information

	Documentation Conventions
	Typeface Conventions
	Keyboard Conventions

	Product Information
	Registering This Product
	Technical Support

	1 - Web-enable an Example Application
	Introduction
	Starting Point

	2 - Web vs Windows Applications
	Introduction
	What is a Skeleton?
	What is TSSCRIPT?
	Dynamic vs. Static HTML
	The Application Broker

	3 - Web Templates
	Web Application Extension
	Web Procedure Extension
	Frame Procedure MDI Options
	Application Menu
	Application Toolbar

	Code Templates
	Dynamic HTML Code Template
	Static HTML Code Template
	GetCookie Code Template
	SetCookie Code Template
	Cookies (Persistent Client Data)
	AddServerProperty Code Template
	GetServerProperty Code Template
	RedirectToPage Code Template
	WebGridExtension
	WebHitManager
	WebHitProc
	WebShowHits
	WebGuardProc Procedure Extenstion
	WebVisitor
	DeleteVisitorProcess

	4 - TSSCRIPT
	Introduction
	Skeletons
	TSScript
	META Tags
	WebStyle Examples

	5 - Skeleton Guide
	Introduction
	Where are the Skeleton files?
	Summary

	6 - Common Questions and Answers
	Introduction
	Common Questions
	How do I set background colors for pages in my application?
	How can I set a default font?
	How can I implement Cascading Style Sheets?
	How can I have an image with text on a button?
	How can I get better control over size & placement of contro
	How can I use meta-tags?
	How can I make a pop-up window for data validation?
	What is the difference between POST and GET and how do I cha
	How can I get server variables and their values?
	How can I create tooltips?
	How can I launch a Clarion application from a link?
	How can I add email capability to my applications?

	7 - Tutorial—Making a Web Application
	Web Application Wizard
	Creating a Hybrid Web/Windows Application
	Deploying the Application
	Faster is Better—Optimizing your Application
	Looks are Important—Adding Graphics

	8 - Tutorial— Web-Enabling an Existing Application
	Using the Global Internet Application Extension Template
	Porting an Application to the Web

	9 - Tutorial— Advanced Web Programming Techniques
	Using Cookies
	Embedding HTML
	Covering the Download with a Splash Window
	Using Partial Refresh to Update Controls
	Restricting Access to a Procedure
	Password Protection

	Restricting Edit-In-Place

	10 - The Internet Builder Class Templates
	The Global Internet Application Extension Template
	Page Settings
	Window Settings
	Help
	Control
	MDI
	Advanced
	Classes

	Global Window Component Options
	Caption
	Menu
	ToolBar
	Client Area
	Class Overrides

	Internet Procedure Extension Template
	Page Settings
	Window Settings
	Help
	Controls
	MDI
	Advanced

	Individual Overrides for a Control
	Display
	HTML
	Events
	Classes

	Procedure Window Component Options
	Caption
	Menu
	Client Area

	Frame Procedure MDI Options
	Application Menu
	Application Toolbar

	Code Templates
	Dynamic HTML Code Template
	Static HTML Code Template
	GetCookie Code Template
	SetCookie Code Template
	Cookies (Persistent Client Data)
	AddServerProperty Code Template
	GetServerProperty Code Template

	11 - Web Application Design Considerations
	Bandwidth Usage Considerations
	Use Partial Refresh whenever possible
	Be frugal with controls
	Use graphics sparingly
	Covering the Download with a Splash Window

	Cosmetic Design Considerations
	Using Groups
	Using Images

	User Interface Design Considerations
	MDI window access
	Restricting Edit-In-Place
	Unsupported Windows Standard Dialogs
	Using Command Line Parameters
	Changing the Class for an individual control
	API calls

	Security Considerations
	Using Passwords

	Using Embedded HTML
	Using references to files in embedded HTML code

	Implementing Help in your Web Application
	Using a Base Document with Mid-Page anchors
	Using individual help Documents

	Windows Controls and their HTML Equivalents
	Hand Coded Applications
	About This Section
	HelloWeb Example Program
	Hand Coded Project Considerations

	12 - IBC Library Quick Reference
	Classes and Their Template Generated Objects
	Quick Reference

	Glossary
	Index

