


Internet Application Guide 2

COPYRIGHT 1994-2003 SoftVelocity Incorporated.  All rights reserved. 
 

This publication is protected by copyright and all rights are reserved by SoftVelocity Incorporated.  
It may not, in whole or part, be copied, photocopied, reproduced, translated, or reduced to any 
electronic medium or machine-readable form without prior consent, in writing, from SoftVelocity 
Incorporated. 
 
This publication supports Clarion.  It is possible that it may contain technical or typographical 
errors.  SoftVelocity Incorporated provides this publication “as is,” without warranty of any kind, 
either expressed or implied. 
 
 
 
 
 
 
SoftVelocity Incorporated 
2769 East Atlantic Blvd. 
Pompano Beach, Florida  33062 
(954) 785-4555 
www.softvelocity.com 
 
 
 
 
 
 
 
 
 
 
Trademark Acknowledgements: 
 
SoftVelocity is a trademark of SoftVelocity Incorporated. 
Clarion™ is a trademark of SoftVelocity Incorporated. 
Btrieve®  is a registered trademark of Pervasive Software. 
Microsoft®,  Windows®,  and Visual Basic®  are registered trademarks of Microsoft Corporation. 
All other products and company names are trademarks of their respective owners. 

 

 

 

Printed in the United States of America  (0804) 



Contents 3

Contents: 
Introduction....................................................................................................7 

What is WebBuilder and Internet Connect? ................................................................. 7 
Clarion Internet Technologies and the Clarion Development Environment ................. 8 
What You’ll Find in this Book........................................................................................ 9 
Where to Find More Information................................................................................. 10 

Documentation Conventions............................................................................................. 11 
Typeface Conventions................................................................................................ 11 
Keyboard Conventions ............................................................................................... 11 

Product Information........................................................................................................... 12 
Registering This Product ............................................................................................ 12 
Technical Support....................................................................................................... 12 

1 - Web-enable an Example Application ....................................................15 
Introduction ....................................................................................................................... 15 

Starting Point .............................................................................................................. 15 
2 - Web vs Windows Applications..............................................................23 

Introduction ....................................................................................................................... 23 
What is a Skeleton?.................................................................................................... 23 
What is TSSCRIPT?................................................................................................... 23 
Dynamic vs. Static HTML ........................................................................................... 26 
The Application Broker ............................................................................................... 28 

3 - Web Templates .......................................................................................29 
Web Application Extension ............................................................................................... 29 
Web Procedure Extension ................................................................................................ 36 
Frame Procedure MDI Options ......................................................................................... 48 

Application Menu ........................................................................................................ 48 
Application Toolbar..................................................................................................... 49 

Code Templates................................................................................................................ 50 
Dynamic HTML Code Template ................................................................................. 50 
Static HTML Code Template ...................................................................................... 50 
GetCookie Code Template ......................................................................................... 51 
SetCookie Code Template ......................................................................................... 51 
Cookies (Persistent Client Data) ................................................................................ 52 
AddServerProperty Code Template ........................................................................... 53 
GetServerProperty Code Template............................................................................ 53 
RedirectToPage Code Template ................................................................................ 54 
WebGridExtension...................................................................................................... 54 
WebHitManager.......................................................................................................... 55 
WebHitProc................................................................................................................. 56 
WebShowHits ............................................................................................................. 58 
WebGuardProc Procedure Extenstion ....................................................................... 65 



Internet Application Guide 4

WebVisitor .................................................................................................................. 66 
DeleteVisitorProcess .................................................................................................. 69 

4 - TSSCRIPT................................................................................................71 
Introduction ....................................................................................................................... 71 

Skeletons .................................................................................................................... 71 
TSScript ...................................................................................................................... 74 
META Tags................................................................................................................. 77 
WebStyle Examples ................................................................................................... 79 

5 - Skeleton Guide .......................................................................................81 
Introduction ....................................................................................................................... 81 

Where are the Skeleton files? .................................................................................... 81 
Summary .................................................................................................................. 116 

6 - Common Questions and Answers ......................................................118 
Introduction ..................................................................................................................... 118 
Common Questions ........................................................................................................ 118 

How do I set background colors for pages in my application? ................................. 118 
How can I set a default font? .................................................................................... 119 
How can I implement Cascading Style Sheets?....................................................... 119 
How can I have an image with text on a button?...................................................... 120 
How can I get better control over size & placement of controls? ............................. 121 
How can I use meta-tags?........................................................................................ 121 
How can I make a pop-up window for data validation?............................................ 122 
What is the difference between POST and GET and how do I change between the 
two? .......................................................................................................................... 123 
How can I get server variables and their values?..................................................... 126 
How can I create tooltips? ........................................................................................ 126 
How can I launch a Clarion application from a link?................................................. 126 
How can I add email capability to my applications?................................................. 127 

7 - Tutorial—Making a Web Application ..................................................131 
Web Application Wizard .................................................................................................. 132 

Creating a Hybrid Web/Windows Application........................................................... 132 
Deploying the Application ......................................................................................... 136 
Faster is Better—Optimizing your Application.......................................................... 140 
Looks are Important—Adding Graphics ................................................................... 144 

8 - Tutorial— Web-Enabling an Existing Application .............................147 
Using the Global Internet Application Extension Template............................................. 148 

Porting an Application to the Web ............................................................................ 148 
9 - Tutorial— Advanced Web Programming Techniques .......................153 

Using Cookies ................................................................................................................. 154 
Embedding HTML ........................................................................................................... 159 



Contents 5

Covering the Download with a Splash Window .............................................................. 164 
Using Partial Refresh to Update Controls ....................................................................... 168 
Restricting Access to a Procedure.................................................................................. 170 

Password Protection................................................................................................. 170 
Restricting Edit-In-Place.................................................................................................. 174 

10 - The Internet Builder Class Templates ..............................................177 
The Global Internet Application Extension Template...................................................... 177 

Page Settings ........................................................................................................... 178 
Window Settings....................................................................................................... 178 
Help .......................................................................................................................... 179 
Control ...................................................................................................................... 180 
MDI ........................................................................................................................... 181 
Advanced.................................................................................................................. 182 
Classes ..................................................................................................................... 183 

Global Window Component Options............................................................................... 184 
Caption ..................................................................................................................... 184 
Menu......................................................................................................................... 185 
ToolBar ..................................................................................................................... 186 
Client Area ................................................................................................................ 187 
Class Overrides ........................................................................................................ 187 

Internet Procedure Extension Template ......................................................................... 188 
Page Settings ........................................................................................................... 188 
Window Settings....................................................................................................... 189 
Help .......................................................................................................................... 189 
Controls .................................................................................................................... 190 
MDI ........................................................................................................................... 192 
Advanced.................................................................................................................. 192 

Individual Overrides for a Control ................................................................................... 195 
Display ...................................................................................................................... 195 
HTML ........................................................................................................................ 196 
Events....................................................................................................................... 197 
Classes ..................................................................................................................... 198 

Procedure Window Component Options......................................................................... 199 
Caption ..................................................................................................................... 199 
Menu......................................................................................................................... 200 
Client Area ................................................................................................................ 201 

Frame Procedure MDI Options ....................................................................................... 203 
Application Menu ...................................................................................................... 203 
Application Toolbar................................................................................................... 203 

Code Templates.............................................................................................................. 205 
Dynamic HTML Code Template ............................................................................... 205 
Static HTML Code Template .................................................................................... 205 
GetCookie Code Template ....................................................................................... 206 
SetCookie Code Template ....................................................................................... 206 
Cookies (Persistent Client Data) .............................................................................. 206 
AddServerProperty Code Template ......................................................................... 207 



Internet Application Guide 6

GetServerProperty Code Template.......................................................................... 207 
11 - Web Application Design Considerations .........................................208 

Bandwidth Usage Considerations................................................................................... 208 
Use Partial Refresh whenever possible ................................................................... 208 
Be frugal with controls .............................................................................................. 209 
Use graphics sparingly ............................................................................................. 209 
Covering the Download with a Splash Window........................................................ 209 

Cosmetic Design Considerations.................................................................................... 212 
Using Groups............................................................................................................ 212 
Using Images............................................................................................................ 213 

User Interface Design Considerations ............................................................................ 214 
MDI window access.................................................................................................. 214 
Restricting Edit-In-Place ........................................................................................... 214 
Unsupported Windows Standard Dialogs................................................................. 215 
Using Command Line Parameters ........................................................................... 216 
Changing the Class for an individual control ............................................................ 216 
API calls.................................................................................................................... 217 

Security Considerations .................................................................................................. 218 
Using Passwords...................................................................................................... 218 

Using Embedded HTML.................................................................................................. 220 
Using references to files in embedded HTML code ................................................. 221 

Implementing Help in your Web Application ................................................................... 223 
Using a Base Document with Mid-Page anchors ..................................................... 223 
Using individual help Documents ............................................................................. 224 

Windows Controls and their HTML Equivalents.............................................................. 225 
Hand Coded Applications................................................................................................ 229 

About This Section ................................................................................................... 229 
HelloWeb Example Program .................................................................................... 229 
Hand Coded Project Considerations ........................................................................ 232 

12 - IBC Library Quick Reference.............................................................233 
Classes and Their Template Generated Objects ..................................................... 234 
Quick Reference....................................................................................................... 235 

Glossary ................................................................................................239 

Index: ................................................................................................243 



Introduction 7

Introduction 
What is WebBuilder and Internet Connect? 

Clarion works together with both Internet Connect and WebBuilder to web-enable 
database applications so that you can use the same application locally (i.e., under 
Windows, Windows 95, Windows 98, or Windows NT) or on the Web using any 
JavaScript enabled browser. Internet Connect also requires a Java enabled browser. 

This book is provided to give you an understanding of Clarion’s internet technologies. 
WebBuilder is a Java-free internet development extension to the Clarion development 
environment. Internet Connect requires Java support. This allows you to create web 
applications in a product that you already know about. The applications you create can 
be compiled to run as a desktop Windows application or to run in an internet browser. 

WebBuilder creates pure HTML pages dynamically at runtime based on the designed 
application. This product includes Skeletons which can be customized to fit the look and 
feel of you applications. Skeletons can be modified without recompiling your application. 
Along with Skeletons, TSSCRIPT (a scripting language) is also introduced in this product. 

The goal of this manual is to get you familiar enough with some of the basics of these two 
technologies in order to make good decisions about your Web applications.  

This book assumes you have completed the tutorials in the Clarion Getting Started and 
Learning Clarion . If you have not yet done so, we urge you to do them before gettng 
started. It is helpful to understand the basic Clarion concepts first. It is also helpful to be 
familiar with the way Web browsers work. Some basic HTML knowledge is also useful. 
Provided as a pdf file is a simple intoduction to the HTML language.  



Internet Application Guide 8

Clarion Internet Technologies and the Clarion Development Environment 

Automatic application developer for Windows or Web 

When you just need a “simple” application to maintain a database, you can literally do the 
job in minutes using Clarion. The key is the database dictionary. If the Application 
Generator knows what files or tables you want in the application and how they’re related, 
it can build an application. So all you need to do is select one or more files then indicate 
(when there are two or more files) whether the files have a one to many relationship or a 
many to one relationship. 

The Application Wizard can then create a full-featured application, and by merely 
checking a box on one of the wizard’s dialogs, you can transform the application into a 
Web-enabled application. The resulting application can run locally or on the Web using 
the Clarion Application Broker.  

Visual development environment for Windows or Web 

With Clarion, dropping a control in a window gives you a lot more than other Rapid 
Application Development tools. These tools typically let you add a user interface control, 
but then expect you to write the code to implement its functionality. With Clarion, you add 
a template, which contains the control, data, and executable code. That means you don’t 
have to write code—one click places a complete business solution: a user interface 
control and the code that enables it to do its job. Moreover, each template has its own 
user interface. When you view the properties for the template, you’ll see an “Actions” tab. 
By checking a box, choosing a dropdown list item, or filling in an edit box, you can 
customize the behavior of the template so that it meets your needs exactly. You’ll set 
“Actions” for the templates at many places in the longer tutorial in this book. 

When you use the template interface to specify these behaviors, the Application 
Generator writes the code (Clarion language source code) that implements the behavior 
for you. Using the templates, you can do an awful lot of custom programming without 
writing a single line of source code. 

This paradigm extends to the web implementation of your application. All of the 
underlying functionality is transformed to represent your application inside a browser. 
Concurrency checking and referential integrity are automatic in your application and are 
enforced over the web in a similar manner. Additional Internet Options allow you to 
control event handling so that you can specify the conditions under which an event is 
processed on the server. 

 



Introduction 9

What You’ll Find in this Book 

The following lists the chapters of this book and summarizes its content: 

Part I—WebBuilder 

Making a Web-enabled application 
Chapter One: This chapter covers how to web-enable an application. It leads you through 
the process step by step. Some deployment steps are also covered so you can test your 
web-enabled applications.   

Differences between Web and Windows applications  
Chapter Two: This chapter discusses the placement of controls in a Windows application. 
It also covers the difference in static vs. dynamic HTML. This chapter also introduces you 
to skeletons and what they are. 

Web Template Guide  
Chapter Three: This chapter documents the Web templates. 
TSSCRIPT 
Chapter Four: This chapter introduces TSSCRIPT, the scripting language that is used to 
create runtime HTML pages. 

Skeleton Guide 
Chapter Five: This chapter provides a reference to the skeleton files. It explains each 
skeleton and it’s purpose. 

Common Questions 
Chapter Six: This is the chapter where everything comes together.  These questions 
have been gathered from several sources including the newsgroups. A solution is 
provided with each question. 

Part II—Internet Connect 

Application Wizard Tutorial  
Chapter Seven: A few quick steps with the Application Wizard allow you create to a 
complete web application in five minutes. 

Web-enabling an Existing Application 
Chapter Eight: Using the IBC templates to port Clarion applications to the Web. 

Advanced Web Programming Techniques 
Chapter Nine: Introduces the customization capabilities offered by the IBC templates. It 
walks you through modifying your application for optimal performance and functionality 
on the web. 



Internet Application Guide 10

Using the Internet Builder Class (IBC) Templates 
Chapter Ten: A reference to the IBC Template interface. 

Application Design Considerations 
Chapter Eleven: Tips and techniques on web-based application design. 

Internet Builder Class Library- A Quick Reference 
Chapter Twelve: A quick guide to the template implementation of the objects in the 
Internet Builder Class (IBC) Library. This chapter lists properties and methods commonly 
used in web-based applications.  

Glossary 
Glossary of terms 

The PDF versions of all manuals are indexed to allow fast searches across all manuals 
(requires Acrobat Reader with Search). 

Where to Find More Information 

The Application Broker manual is the guide to installing, configuring, and using the 
Clarion Application Broker.  

The PDF versions of the manuals are indexed to allow fast searches across all manuals 
(requires Acrobat Reader 3.x with Search; the installation program is on the CD). 

Important: if any part of the online help text conflicts with the printed 
documentation, the information in online help should take precedence. SoftVelocity 
makes every reasonable effort to ensure the printed documentation is up to date. 
However, the lead-time required by printers may create a lag in the documentation; while 
we can update the online files that ship concurrently with a product revision, printed 
materials must “catch up” later. 

 



Introduction 11

Documentation Conventions 
Typeface Conventions 

Italics Indicates what to type at the keyboard, such as Enter This. It is also used 
to identify the title bar text of a window. 

CAPS Indicates keystrokes to enter at the keyboard, such as ENTER or 
ESCAPE, or to CLICK the mouse. 

Boldface Indicates prompts or options from a pulldown menu or text in a dialog 
window.  

Courier New Used for diagrams, source code listings, to annotate examples, and for 
examples of the usage of source statements. 

Keyboard Conventions 

F1  Indicates a single keystroke. In this case, press and release the f1 key. 

ALT+X Indicates a combination of keystrokes.  In this case, hold down the ALT 
key and press the X key, then release both keys. 



Internet Application Guide 12

Product Information 
Registering This Product 

Before you begin using your Clarion internet product, be sure to fill out and mail in the 
registration card that came in the package.  This Business Reply Card makes you eligible 
to receive several important benefits. Once registered, you can use SoftVelocity’s 
Technical Support services and you automatically receive new product announcements 
and update alerts. 

Technical Support 

Help can be obtained from several different online newsgroups. Our web site, 
www.softvelocity.com, details the available technical support plans. 

Usenet Newsgroup--comp.lang.clarion 

You can participate in the Clarion Usenet Newsgroup on the Internet--comp.lang.clarion. 
In this newsgroup, Clarion programmers from around the world exchange ideas and 
techniques. Log into your News Server and subscribe to comp.lang.clarion. If your news 
server does not carry the feed, you should contact your Internet provider. 

SoftVelocity's product newsgroups 

SoftVelocity's internal newsserver offers newsgroups for all SoftVelocity products. To 
subscribe to these groups use news.softvelocity.com as the news server. There are 
several newsgroups you can subscribe to on this server. 

SoftVelocity's Web Site: 

You can find other Clarion resources on the Internet by visiting SoftVelocity's site on the 
World Wide Web: 

 http://www.softvelocity.com 

Paid Technical Support 

Paid telephone technical support is available. Refer to the SoftVelocity web site for the 
most up to date information on the available technical support plans. 



Example Application 13

Part I 
—— 

WebBuilder 
Technology 



Internet Application Guide 14

 



Example Application 15

1 - Web-enable an Example Application 
 
Introduction 

This chapter goes through an example web-enabled application like an annotated 
example. 

It covers the templates used, which settings were used and why. It also covers running 
the application and what you should be seeing when you do. 

Upon running the application, some areas may not look right. How does one fix them? 
This part covers the skeletons, how to change themes and walks through a small 
skeleton to show what it does. We will also look at the generated HTML code in your 
internet browser while the application is running. 

Starting Point 

Start Clarion.  Open the example Web application (WebInv), located in the  
\Clarion6\Examples\WebInv\ folder. Your desktop should look like this: 

 

The first stop is the Global  button, and the Extensions button therein. This is the 
place to set all the defaults for the application.  You will see the Web Application 
Extension highlighted. This extension is required for all web applications. 



Internet Application Guide 16

 

This is the dialog where global extension templates are added to the application. As 
shipped, there are 3 themes for your Web applications, the default is used here. 

 

Detailed information about the template dialogs is in the Web Template chapter.  

Select the Advanced tab.  

 



Example Application 17

This dialog shows the time out value. The timeout value means if there is no activity (like 
a keystroke) detected in the specified number of seconds, the application will 
automatically terminate. Depending on your use, you may adjust this setting to a higher 
or lower value. 

Press the OK button until you return to the application tree. If you add this global 
extension to an existing application, it causes a procedure extension template to be 
added to every procedure in your application, with the defaults. 

Highlight the Main procedure. On the right hand of the Clarion desktop, expand the 
Extension tree, if it is collapsed. You do this by clicking on the plus sign. You will see a 
Web Procedure Extension template entry. RIGHT-CLICK on it and then choose 
Properties from the popup menu. You should see this dialog: 

 

This dialog, the Web Procedure Extension, is similar to the global Web Application 
Extension. There are some template prompts that allow your application to have desktop 
specific vs. Web specific functionality.  

If you recall, Clarion builds a default menu for you.  Some of these menus should never 
be seen by a Web application. Choose the Controls tab.  

 



Internet Application Guide 18

 

You can see that some of the controls are changed from the defaults (which is to include 
everything from a desktop application). Press the Properties button for the first item in 
this list, ?FileMenu. The following dialog appears: 

 

The check box, Hide if launched from browser means that when this application is 
launched as a Web application, the menu is hidden. It is visible if run as a desktop 
application. 

This is used because the normal “File” menu is not applicable when running in a browser. 
There are other menu items that have also been changed. If you look closer, you see the 
menus are not changed.  This is not needed as hiding a menu will hide all items in it. The 
other menus that should be hidden are the “Edit” menu (where you normally find Cut, 
Copy, Paste, etc) and the “Window” menu (where you find the Tile, Cascade, and list of 
open windows, etc). 

Press the OK button until you are back at the application tree. 



Example Application 19

Select the Splash procedure at the bottom of the tree. Open the Web Procedure 
Extension template like you did previously. Choose the Controls tab. Press the 
Properties button for ?String2, then choose the HTML tab. You will see this dialog: 

 

This is where you can add static HTML code before and after the control. In this case, 
center the text, change to MS Sans Serif font with the bold attribute. The after control text 
box are the required ending HTML tags. If the end tags were not entered here, then every 
control appearing afterwards will inherit these changes.  This is usually not the desired 
effect. 

The other changed controls are the same. Press the OK or Cancel button to return to the 
application tree. 

Select the BrowseCustomers procedure and open its Web Procedure Extension 
template. Choose the Controls tab. Scroll down until you see ?Browse:1 (Changed). 



Internet Application Guide 20

 

Open its properties and choose the Events tab. You will see this dialog: 

 

This is a powerful feature for Web applications. When any column in a listbox changes, 
the page is refreshed. This means that the listbox will always display the correct values in 
the browser. Close the dialog and look at the other changed controls. They also have this 
box checked. This is because of the strings on the window of the procedure. 

Close all dialogs until you come back to the application tree. Now let’s look at a way of 
embedding HTML code in embed points. 

RIGHT-CLICK on the BrowseCustomers procedure and choose Embeds. Press the 
Show Filled Only and Expand Filled icon buttons on the embed toolbar. You should 
see something similar to this: 



Example Application 21

 
The two Internet only embed points are clearly visible. The first embed, Internet - after the 
opening <BODY> tag has this code in it: 

! center table and make it 600 pixels 
TARGET.Writeln('<div align="center"><center>') 
TARGET.Writeln('<Table width="600"><TR><TD>') 

Writeln is a method that sends text into an open document. What is happening here is 
that we want the list box centered in the browser and with a restricted width so it looks 
like the desktop version.  This embed is not required for the functioning of the application, 
but it clearly looks better. 

The next embed, Internet - before the closing </BODY> tag has this source: 
! closing tags 

TARGET.Writeln('</td></tr></Table>') 
TARGET.Writeln('</center></div>') 

Since the tags in the first embeds require closing tags, the same technique is used to 
insert them into the HTML generated page, at the proper point.  

Press the OK or Cancel buttons until you return to the application tree. 

Feel free to look at other procedures and their settings. For information on the 
deployment of this application to your browser, refer to the tutorial sections found later on 
in this document. 

These areas are not the only way to accomplish the desired effect. There are many other 
ways. The rest of this book covers some alternate methods. As you may have come to 
expect from using Clarion tools, there is seldom a single correct way to do a task!  

 



Internet Application Guide 22



Web vs Windows Applications 23

2 - Web vs Windows Applications 
Introduction 

This chapter asks and answers some basic questions as well as introduces the concept 
of skeletons, the scripting language used in the skeletons and how you could use it.  

Also, how does one use HTML in Clarion applications? Must one use the skeletons? 
What is the role of skeletons and what is TSSCRIPT?  How does the broker fit in?  

What is a Skeleton? 

Simply put, a skeleton is an HTML file with a scripting language embedded in them. The 
role of these scripts is to take the window controls and their attributes and dynamically 
merge them with the skeleton to generate the correct and functioning HTML code at 
runtime. 

What is TSSCRIPT? 

TSSCRIPT is the scripting language used in the skeletons. The scripts themselves are 
useful, but in the traditional Clarion style, there are underlying objects with template 
interfaces. 

Here is an example. Suppose you want to use a column in a table that stores a 
customer’s email address? You can take advantage of TSSCRIPT to accomplish this. 
First, here is the interesting bits from the email skeleton (hotstring.htm): 
<meta name="ts-control" content="sstring"> 
<meta name="ts-capabilities" content="email"> 
</head> 

<BODY> 
<!-- HotString.htm -- Start --> 

Notice the ts-capabilites and the content. Now, let’s inspect the template dialog for a 
individual control override: 



Internet Application Guide 24

 

There is a template prompt and a value to set in order to apply this to a control. You 
should also notice that the ts-control defines the content of the email control to be a 
STRING (the type of string is unimportant). 

Simply place the string control on a window (like a browse procedure). When you run the 
application in a browser, it will look like this: 

 



Web vs Windows Applications 25

And if you click on the link, your default email client is launched: 

 
The generated HTML looks like this: 

<!-- HotString.htm -- Start --> 
  <A HREF='mailto:info@ATT.com'>info@ATT.com 
  </A> 

This is one way to make a very simple change via the templates, with no embedded code 
to get the desired feature. 

So where do the skeletons come in? The skeletons are covered in detail in a later 
chapter, but here is how this works. We’ll start where we left off in the skeleton: 
<!-- HotString.htm -- Start --> 
<TSSCRIPT tag=a attr=href replace=NAME value=Contents> 
  <A HREF="mailto:NAME"> 
    <TSSCRIPT value=Contents> 
    </TSSCRIPT> 
  </A> 
</TSSCRIPT> 

Compare the above with what was generated at runtime. You can start to see how 
TSSCRIPT works. The first line is says that it needs an anchor tag (that is the tag=a 
attribute), and the anchor tag has an attribute of HREF. It also declares the replace 
variable, called NAME and a value variable called CONENTS. 

The next line is psuedo-HTML code for an email anchor. The actual replacing is done in 
the next TSSCRIPT line, where it parses the whatever the value of the Contents is.  The 
rest of the lines are the required end tags. 

So you have the correct anchor tag for the email generated as shown above. 



Internet Application Guide 26

Dynamic vs. Static HTML 

You can use either one you feel fits the need, but best results can be achieved when you 
use both. 

What if you have a column in one of your tables that stores a customer’s email address 
(as long as we are on this theme), and you want to display this email address as you 
scroll through the rows on your browse list. But even better, suppose as you scroll 
through your list, you can simply click on the displayed string to start your email client. 

You have a local string variable called DisplayString and it is somewhere on your browse 
window (not in the list itself). You would want this populated with a “friendly name”, like 
“Joe Q. Smith”.  However, you want this to appear as a link and if you click on it, an email 
is started. 

The local variable, DisplayString is populated everytime a new selection in the list is 
made.  In other words, as you scroll up and down the list.the SetQueueRecord embed is 
used. You could code something like this: 

DisplayString = 'Reply to ' & CLIP(CUS:FirstName) & CUS:LastName 

This ensures the string has the proper data visible. However, what we want is to make an 
email anchor. This is done with HTML code, but some of this needs to be dynamic, like 
the email address of the person we are sending email to. 

In this case, you can use the DynamicHTML code template. You want to put it before the 
control of ?DisplayString. There is an embed for that (as well as all controls populated on 
a window). 

The Dynamic HTML code template looks like this: 

 

You could enter the following into this template: 

'<<a href="mailto:' & CLIP(CUS:Email) & '?Subject=The next 
DevCon">' 

 



Web vs Windows Applications 27

Pressing the ellipsis button will open the variable selection dialog. The use of this lookup 
is not required. 

The next step is to add static HTML code as you will need some code that will never 
change.  This is ideal for end tags. Simply find the Internet embed after generating HTML 
for the control. 

Again, you can use a code template, in this case the StaticHTML code template. Just 
enter the HTML code you wish to insert after the control. 

 

When you are done, your embed tree will look similar to this: 

 

Now you have your link. There are other possiblities you can use with these templates 
and skeletons. 



Internet Application Guide 28

The Application Broker 

There are two forms of the Application Broker. The linked in (executable) broker is used 
for testing your web developed application. This is automagically linked in when you 
compile and run an application with the Web templates. 

For more details about the Application Broker and various deployment steps, see the 
Application Broker manual. What is the Applicaiton Broker?  What does it do? 

Examine the following diagram: 

This shows that the broker gets its data from two sources, the Clarion application and the 
skeletons. It then passes data (HTML pages) to a browser  so the user can interact with the 
program. 

 

 



Web Templates 29

3 - Web Templates 
Web Application Extension  

The Web Application Extension is a global template that Web-enables a Clarion 
application. It adds the functionality of generating dynamic HTML when the application is 
accessed through the Application Broker. This template allows you to specify the options 
to use when generating an HTML representation of your windows and reports.  

 

In addition, it automatically adds the Web Procedure Extension to every existing 
procedure in your application and any procedures subsequently added to the application. 
The Web Procedure Extension allows you to override many of the global options for a 
specific procedure.  

This template allows you to customize the global appearance and behavior of your 
application when it is executed over the Web. The settings you specify here are global in 
nature; that is, they affect every procedure in your application. 

You can override most of these settings on a procedure level using the Web Procedure 
Extension’s settings. In addition, some options can be specified on a control-by-control 
basis. The combination of these three levels of customization provides you with complete 
flexibility of design. 



Internet Application Guide 30

Window Settings 

Skeletons are a collection of HTML files that contain all the information needed to control 
the construction of the delivered HTML pages. These files consist of true HTML code 
along with the TSSCRIPT scripting language. 

 

The Window tab allows the global setting of the skeleton to be used for the basic window 
design of your application’s windows. 

Theme 

Skeleton files can be categorized into common themes or styles so all window 
representations in a theme have a common look and feel. Specify the default window 
theme here. 

Window Skeleton to use 

Specifies the default window skeleton to use. This is normally a modified version of 
WINDOW.HTM skeleton from the supplied skeleton files.  

Extra capabilities 

Specifies extra capabilities of one skeleton versus another. The capability is specified 
here. 



Web Templates 31

MDI Settings 

This section determines the manner in which Application Menus and Toolbars are 
handled. 

 

 

For control over specific Menu or Toolbar items, set the MDI overrides in the Frame 
Procedure’s Internet Options. 

Frame Menu 

This section determines the manner in which Application Menus are handled. This allows 
you to specify which global menu options are displayed on “child” windows. 

Include on Child Windows 
Select an option from the drop-down list. The choices are: 

All Menu Items  All menu choices appear on child windows. 
No Menu Items  No menu choices appear on child windows. 

Ignore code in frame’s ACCEPT loop 
Check this box to ignore any code in the Application Frame’s ACCEPT loop for menu 
items. If not checked, any embedded code implemented in the Frame’s ACCEPT loop is 
automatically implemented in the child procedure. 



Internet Application Guide 32

Frame Toolbar 

This section determines the manner in which Application Toolbar controls are handled. 
This allows you to specify which global Toolbar controls are displayed on “child” windows. 

Include on Child Windows 
Select an option from the drop-down list. The choices are: 

All Toolbar Items 
All Toolbar items appear on child windows. 

Standard Toolbar Only 
Only the Standard Toolbar items appear on child windows. These are the buttons 
added by the FrameBrowseControl template. 

No Toolbar Items 
No Toolbar items appear on child windows. 

Ignore code in frame’s ACCEPT loop 
Check this box to ignore any code in the Application Frame’s ACCEPT loop for toolbar 
items. If not checked, any embedded code implemented in the Frame’s ACCEPT loop is 
automatically implemented in the child procedure. 

Advanced tab 

 



Web Templates 33

Page to return to on exit 
Optionally, specify the HTML page to return to when the program ends. The template 
generated code calls the WebServer.Init method to set the WebServer.PagetoReturnTo 
property. 

Time out (seconds) 
This specifies the maximum amount of idle time (measured in seconds) before an 
application closes. The default is 600 seconds (10 minutes).  The template generated 
code calls the WebServer.Init method to set the WebServer.TimeOut property. 

Sub directory for pages 
The directory in which the application creates temporary directories (a temporary 
directory is made for each active connection) to write the dynamic HTML and graphic 
files. This is also the directory in which to deploy graphic files. If you provide a graphic in 
this directory, it is not extracted and written to the temporary directory. This defaults to 
/PUBLIC.  The template generated code calls the WebFilesManager.Init method to set 
the property. It is not appropriate to set this property at runtime. 

Sub directory for skeletons 
The directory in which the application skeleton files are stored.  This defaults to 
SKELETON. The skeletons must be available at runtime. Multiple directories may be 
specified. They are separated by a semicolon (;). The template generated code calls the 
AddSkeletonDirectory method to set the path. 

Use Cookies Rather than INI File 
Check this box to use cookie files instead of an INI file for storage of data related to a 
web site. 



Internet Application Guide 34

Global Objects tab 

The Global Objects tab lets you specify which classes (objects) the templates instantiate 
globally in your application to accomplish various tasks, and the source modules that 
contain the class definitions. This approach gives you the capability to use as much of the 
WBC Library as you want and as much of your own classes as you want.  

 

To change the class for an item or override the class, press the button for the class you 
wish to affect. 



Web Templates 35

Classes tab 

The Classes Tab lets you specify which classes (objects) the templates use to 
accomplish various tasks, and the source modules that contain the class definitions. This 
approach gives you the capability to use as much of the WBC Library as you want and as 
much of your own classes as you want.  

 

To change the class for an item or override the class, highlight it in the list, then press the 
Properties button. 



Internet Application Guide 36

Web Procedure Extension  
This template allows you to customize the appearance and behavior of a procedure when 
it is executed over the Web. The settings you specify here are local in nature, that is they 
affect only this procedure. To change Global Settings: press the Global Icon Button on 
the Application Generator, then press the Extensions button, and modify the settings for 
the Web Application Extension.  

To modify the settings, press the Internet Options button on the Procedure Properties 
window. 

Window Tab 

Skeletons are a collection of HTML files that contain all the information needed to control 
the construction of the delivered HTML pages. These files consist of true HTML code 
along with the TSSCRIPT scripting language. 

 

The Window tab allows you to override the global skeleton settings for this procedure 
only. The change will not affect any other procedure. 

Override Global settings 
Check this box to override the Window settings in the global Web Application Extension 
template. Checking this box enables the prompts below. 

Skeleton to use 
Specifies the default window skeleton to use. This is normally a modified version of 
WINDOW.HTM skeleton from the supplied skeleton files.  

Theme 
Skeleton files can be categorized into common themes or styles so all window 
representations in a theme have a common look and feel. Specify the default winodw 
theme here. 



Web Templates 37

Extra capabilities 
Specifies extra capabilities of one skeleton versus another. The capability is specified 
here. This is referring to a TSSCRIPT property.  This is covered in more detail in Chapter 
Six of this guide. 

Return if launched from browser 
Check this box to disable the procedure when the application is run over the Web. This 
allows you to remove functionality for the Web version of your application without 
removing it from the Windows version. 

 

Report Tab 

The Report tab defines how the report title and page number will display on the 
generated HTML page. By default all internet reports will contain a toolbar at the top of 
the generated HTML page. This toolbar give the following functionality: 

First Page, Previous Page, Next Page, Last Page, Zoom In, Zoom Out, One Page, Two 
Pages, and Exit. 

The reports tab contains the following template prompts: 

Previewer Window Title 
Specifies the title of the report should display in the report preview window. This title will 
display in the internet explorer window title as well as at the top of the HTML page above 
the report. This must be a string. 

Include current page in title? 
Check this box to display the current page number in the report previewer window as well 
as at the top of the HTML page above the report.  

Show total Pages in title? 
Check this box to display the total number of pages in the report previewer window (next 
to the current page number) as well as at the top of the HTML page above the report 
(next to the current page number).  



Internet Application Guide 38

Controls Tab 

 

Individual Control Options 
Hightlight a control in the listbox and press the Properties button to modify 
specific control options. 

Display 

 

Skeleton to use 
Specifies the default window skeleton to use. This is normally a modified version of 
WINDOW.HTM skeleton from the supplied skeleton files.  

Theme 
Skeleton files can be categorized into common themes or styles so all window 
representations in a theme have a common look and feel. Specify the default winodw 
theme here. 



Web Templates 39

Extra capabilities 
Specifies extra capabilities of one skeleton versus another. The capability is specified 
here. 

Type of field 
This is for fields which need special formatting such as dates, times, and monetary 
pictures. 

HTML 

 

One of the most powerful features of the WBC Templates is the ability to embed HTML 
code in the HTML pages which are output by the Web-enabled application. This feature 
allows you to add any HTML code at points before or after any control on the resulting 
Web page. This code does not affect the application when it is running as a Windows 
executable. 

Using Embedded HTML, you can write any HTML code supported by the browser. You 
can insert your own custom JavaScript, Java applets, ActiveX controls, Shockwave files, 
or other objects. 



Internet Application Guide 40

Events 

This tab allows you to override the page submission event for a control.  

 

Refresh when changed 

Check this box to cause the page to be submitted to the server when the value of the 
control changes. The press of a command button automatically causes a page 
submission. Most other controls that allow data entry do not automatically submit the 
page to the browser.  

This means the processing of events associated with the control is delayed until the page 
is submitted to the browser. Your embedded code would not execute at the expected 
time (e.g., code in the Event:Accepted embed point for a control would not execute until 
the OK button submitted the page). This option allows you to override the page 
submission event. 

The ability to override the default page submission event when the application is 
executed in a browser allows you to optimize the application for the Web environment 
and ensure that all of your embedded code is executed at the time you expect it to.  



Web Templates 41

Properties 

A Property is a predefined or customized attribute that is defined in a skeleton file. 
Through this dialog the skeleton’s property can be accessed and executed. Properties 
serve as a way to translate information about a window or control from the executable to 
the dynamically generated HTML page. 

 

Press the Insert, Properties or Delete button to modify the properties that the 
application will look for in the skeleton files.  

 

Name of Property 
Enter the name of the TSSCRIPT property defined in the skeleton file. 

Type of Property 
Select the data type from the dropdown list. Select from BOOL, Integer, String, or 
Reference. 

Value 
Enter a literal value or a valid clarion language expression. 



Internet Application Guide 42

Classes 

The Classes Tab lets you specify which classes (objects) the templates use to 
accomplish various tasks, and the source modules that contain the class definitions. This 
approach gives you the capability to use as much of the WBC Library as you want and as 
much of your own classes as you want.  

 

To change the class for an item or override the class, highlight it in the list, then press the 
Properties button. 



Web Templates 43

MDI Tab 

This section determines the manner in which Application Menus and Toolbars are 
handled. 

 

 

For control over specific Menu or Toolbar items, set the MDI overrides in the Frame 
Procedure’s Internet Options. 

Merge Frame Menu 
Check this box to Merge the Frame’s Menu when running this procedure. 

Merge Frame Toolbar 
Check this box to Merge the Frame’s Toolbar when running this procedure. 

For a Frame Procedure, you have additional options. See Frame Procedure MDI Options.  



Internet Application Guide 44

Properties Tab 

A Property is a predefined or customized attribute that is defined in a skeleton file. 
Through this dialog the skeleton’s property can be accessed and executed. Properties 
serve as a way to translate information about a window or control from the executable to 
the dynamically generated HTML page. 

 

Press the Insert, Properties or Delete button to modify the properties that the 
application will look for in the skeleton files.  

 

Name of Property 
Enter the name of the TSSCRIPT property defined in the skeleton file. 

Type of Property 
Select the data type from the dropdown list. Select from BOOL, Integer, String, or 
Reference. 

Value 
Enter a literal value or a valid clarion language expression. 



Web Templates 45

Advanced Tab 

 

Security 

Restrict Access to this procedure 
Check this box to password protect the procedure and enable the two fields below.  

Password 
Specify a password or select a variable from the file schematic by pressing the ellipsis 
(...) button. A static password provides simple protection.  

Case Sensitive 
Check this box to enforce case sensitive validation of the password. If the box is not 
checked, case is ignored. 

Window refresh 

Show progress window 
This controls the window associated with a Report or Process procedure. It is not 
available for other procedure types. Check this box to display the window associated with 
the Report Procedure when running over the Web. If not checked, the window is ignored. 
If the window in a Report Procedure contains a Pause Button control template, the box is 
checked and cannot be changed. In a Process procedure, the box is checked and cannot 
be changed. This makes sure the window displays. 



Internet Application Guide 46

Time between refresh 
Specify the number of seconds between each refresh. 

Action on Timer 
Specify the action to perform when the timer event is reached. The choices are:  

Partial Page refresh 
Redisplays Java controls and HTML entry controls to reflect current data. 

Submit page 
Sends data to server application and redraws  page as instructed by the server 
application 

Complete Page refresh 
Redraws the entire page. 

Enable Refresh on timer 
Check this box to refresh the entire page or only the page data based on a timer. A 
TIMER attribute on a WINDOW is independant of this setting. This setting is used on the 
Web and the TIMER attribute is used when the application runs under Windows. 

 

This feature should be used sparingly to ensure minimal network traffic. 

Time between refresh 
Specify the number of seconds between each refresh. 



Web Templates 47

Action on Timer 
Specify the action to perform when the timer event is reached. The choices are:  

Partial Page refresh 
Redisplays Java controls and HTML entry controls to reflect current data. 

Submit page 
Sends data to server application and redraws  page as instructed by the server 
application 

Complete Page refresh 
Redraws the entire page. 

Classes Tab 

The Classes Tab lets you specify which classes (objects) the templates use to 
accomplish various tasks, and the source modules that contain the class definitions. This 
approach gives you the capability to use as much of the WBC Library as you want and as 
much of your own classes as you want.  

 

To change the class for an item or override the class, highlight it in the list, then press the 
Properties button. 

 



Internet Application Guide 48

Frame Procedure MDI Options 
Application Menu 

 

Override Global settings 
Check this box to override the Menu MDI settings in the global Web Application 
Extension template. Checking this box enables the other prompts. 

Include on Child Windows 
Select the option from the drop-down list. The choices are: 

Global Setting 
Menu choices appear on child windows as specified in the Global options. 

All Menu Items 
All menu choices appear on child windows. 

No Menu Items 
No menu choices appear on child windows. 

Selected Menu Items 
Allows you to select individual menu options from the list below. 

Ignore frame code  
Check this box to ignore any embedded code in the Application Frame’s ACCEPT loop 
for menu items. 



Web Templates 49

Application Toolbar 

This section determines the manner in which Application Toolbar controls are handled. 
This allows you to specify which global Toolbar controls are displayed on “child” windows. 

Override Global settings 
Check this box to override the Toolbar MDI settings in the global Web Application 
Extension template. Checking this box enables the other prompts. 

Include on Child Windows 
Select the option from the drop-down list. The choices are: 

Global Setting 
Toolbar controls appear on child windows as specified in the Global options. 

All Toolbar Items 
All Toolbar items appear on child windows. 

Standard Toolbar Only 
Only the Standard Toolbar items appear on child windows. 

No Toolbar Items 
No Toolbar items appear on child windows. 

Selected Toolbar Items 
Allows you to select individual Toolbar items from the list below. 

Ignore frame code 
Check this box to ignore any embedded code in the Application Frame’s ACCEPT loop 
for toolbar items. 



Internet Application Guide 50

Code Templates 
Dynamic HTML Code Template 

This code template allows you to insert dynamic HTML code in any of the Internet embed 
points. This template is only available for Embed points that can write to the delivered 
HTML page at runtime. 

You can specify any valid Clarion expression in the entry box. Any variables used in the 
expression will use the current value at the time the HTML code is written. 

 

When creating your expression to write HTML code, you must handle special characters, 
such as <, by using two characters in succession.  

This template uses the Target.WriteLn method to write the value of the expression to the 
delivered HTML page. 

See also: Embedding HTML  

Static HTML Code Template 

This code template allows you to insert static HTML code in any of the Internet embed 
points. This template is only available for Embed points that can write to the delivered 
HTML page at runtime. 

You can specify any valid HTML code in the entry box.  

This template uses the Target.WriteLn method to write the HTML code to the delivered 
HTML page. 

 

If you use the Static HTML Code Template, special characters are handled automatically.  



Web Templates 51

GetCookie Code Template 

This template allows you to retrieve a cookie from the client’s machine. The following 
template prompts are provided: 

Cookie Name  
Provide a name for the cookie. This is the name used in the SetCookie Code template to 
write the cookie. If the cookie does not exist, a null value is assigned to the Variable to 
Set. 

Variable to Set  
Select a variable from the file schematic by pressing the ellipsis (...) button. The value of 
the cookie is assigned to the variable. 

See also: SetCookie Code Template, Cookies (Persistent Client Data) 

 

SetCookie Code Template 

This template allows you to set a cookie on the client’s machine for later retrieval. The 
following template prompts are provided: 

Cookie Name 
Provide a name for the cookie. This is the name to use in the GetCookie Code template 
to retrieve the cookie. If a cookie of the same name exists, it is overwritten. 

New Value 
Specify a value or select a variable from the file schematic by pressing the ellipsis (...) 
button. This value is assigned to the cookie. 

See also: GetCookie Code Template, Cookies (Persistent Client Data) 



Internet Application Guide 52

Cookies (Persistent Client Data) 

Cookies are a method for Web servers to both store and retrieve information on the client 
side of the connection. This allows a server to store data on the client’s machine and 
retrieve it later. 

A server can send a piece of data to the client (browser) which the client stores locally. 
This is known as a cookie (the name has no known origin). Cookies contain a range of 
URLs for which it is valid.  

Later, when the client returns to a URL within that range, the server can query the cookie 
and use that data. A server cannot retrieve information from other servers (i.e., a server 
cannot query a cookie that is out of its domain range). 

This mechanism is similar to the INI file storage and retrieval paradigm in Windows 
(GETINI and PUTINI) and provides a method for identifying user preferences, and other 
data.  

For example, an application that requires a user to provide their name before entering 
can use a cookie to avoid the Login process after the first visit.  

 

Cookies are machine specific so a client who accesses a site from more than one 
machine will need to provide the cookie information once for each machine so a cookie is 
stored on the machine. In addition, cookies are browser specific, so a client who uses 
more than one browser, will need to set and get cookies for each browser. 

Your Web-enabled applications can use cookies to store user preferences such as the 
default city and state for new records. These settings can be retrieved the next time the 
user runs the application over the Web. 

See also: GetCookie Code Template, SetCookie Code Template 



Web Templates 53

AddServerProperty Code Template 

This template allows you to set the value of the specified outgoing http item in the HTTP 
header. The following prompts are provided: 

Property Name 
Provide the property name to set. 

Property Value 
Select a variable from the file schematic by pressing the ellipsis (...) button. The value of 
the variable is assigned to the property. 

See Also :  GetServerProperty Code Template 

 

GetServerProperty Code Template 

This template allows you to get the value of the specified http item in the HTTP header. 
The following prompts are provided. 

Property Name  

Provide a name for the HTTP property. If the HTTP field does not exist, a null value is 
assigned to the Variable to Set. 

Variable to Set  

Select a variable from the file schematic by pressing the ellipsis (...) button. The value of 
the property is assigned to the variable. 

See Also :  SetServerProperty Code Template 



Internet Application Guide 54

RedirectToPage Code Template 

This template redirects the browser to the designated URL. At the present time, the 
running program is left running. The program must be terminated or left to time out. 

The following prompt is provided: 

Page to redirect to 

Specifies the URL of the page the browser it redirected to. An absolute or relative URL 
may be specified. 

WebGridExtension 

All BrowseBoxes that use the ABC’s BrowseGrid control template must use this template 
for Web applications. 

 

This template requires the use of the ABC BrowseGrid extension. 

1. RIGHT-CLICK on the procedure and choose Extensions from the popup menu.  

2. Within the list of existing extensions, highlight Cause Browse to act as grid.  

3. Press the INSERT button and select the WebGridExtension extension. 

This template has no prompts. 

For further information about using the browse grid interface, see the BrowseGrid 
template documentation which can be found in the Template By Topic PDF. 

 



Web Templates 55

WebHitManager 

The WebHitManager extension template provides the ability to record the number of 
accesses (hits) to an application or certain procedures within the application. Hit counts 
can be tied to a particular window activity or control event. This extension template is 
added to the global extension of the application file and allows the Hit Managers global 
options to be set. 

This extension template requires the WebApplicationExtension. 

Populating the Template 

1. Press the Global button from the IDE.  

2. Press the Extensions button. 

3. Highlight the WebApplicationExtension template. 

4. Press the INSERT button and select the WebHitManager extension. 

 

The WebHitManager template provides the following prompts: 

Hit Manager Options 

Hits Data File 
Specify the log file that is used to store the WebHit counts. If no path is specified, 
the file is created in the Windows directory. 

File Update Threshold 
Specifies the number of hits to occur before the counts are written to the Hits 
Data File. The counts are written when the program is terminated, regardless of 
the threshold specified. 



Internet Application Guide 56

Global Objects 

The Global Objects tab lets you specify the default object names for the objects used by 
the ABC Templates. You can also specify the default classes to be used for the global 
objects. 

Classes 

The classes tab lets you control the class (and object) the template uses. You may 
accept the default Application Builder Class and it’s object (recommended) or you may 
specify your own or a third party class. Deriving your own class can give you very fine 
control over the procedure when the standard Application Builder Class is not precisely 
what you need. 

See Template Overview – Classes Tab Options – Local for complete information on 
these options. 

WebHitProc 

The WebHitProc extension template provides the ability to record the number of 
accesses (hits) to an application or certain procedures within the application. Hit counts 
can be tied to a particular window activity or control event. This extension template is 
added to any procedure that will record the hits tied to the procedure at the procedure 
entry level, window event level or control event level. This extension requires the 
application to have the global WebHitManager extension. 

This extension template requires the WebHitManger global extension. 

Populating the Template 

1. RIGHT-CLICK on the procedure and choose Extensions from the popup menu.  

2. Press the INSERT button and select the WebHitProc extension. 

 



Web Templates 57

Template Prompts 

 

The WebHitProc template provides the following prompts: 

Procedure Hit Count Options 

Procedure Instance Id 
Specifies the id of the hit instance recorded in the log file. This id is used to read 
and write the hit count to the log file. By default this is the name of the procedure. 

Procedure Entry Tag 
Specifies text to describe the procedure action that is counted. This text is written 
to the log file. By default this is set to Entered. 

Control Tags 
Provides a listbox in order to define one or more control specific hit counts. 

Link Tag 
Specifies text to describe the window or control event that is counted. This text is written 
to the log file following the Procedure Instance Id. 

Trigger Control 
Select a control from the drop down listbox. This will trigger the hit count to be 
incremented when the control is handled and the Trigger Event occurs. To trigger a hit 
count on a window event, leave the Trigger Control blank. 

Trigger Event 
Select an event from the drop down listbox. This will trigger the hit count to be 
incremented when the event occurs. If a control is specified as the Trigger Control, the 
event is based on the control. If no control is specified, the event is based on the window. 



Internet Application Guide 58

Classes 

The classes tab lets you control the class (and object) the template uses. You may 
accept the default Application Builder Class and it’s object (recommended) or you may 
specify your own or a third party class. Deriving your own class can give you very fine 
control over the procedure when the standard Application Builder Class is not precisely 
what you need. 

See Template Overview – Classes Tab Options – Local for complete information on 
these options. 

WebShowHits 

The WebShowHits extension provides the ability to display a hit count. This extension 
requires the application to have the WebHitProc extension. 

This extension template requires the WebHitProc extension. 

Populating the Template 

1. RIGHT-CLICK on the procedure and choose Extensions from the popup menu.  

2. Press the INSERT button and select the WebShowHits extension. 

Template Prompts 

The WebShowHits template provides the following prompts: 

Count Tag 
Specifies the tag defined in the WebHitsProc extension for a Procedure Entry Tag or 
Control Link Tag. This tag is used to retrieve and display an up to date count. This tag is 
case sensitive. 

Assignment Type 
Select Text Property or Variable from the drop down listbox. This assigns the specified 
control or variable the value of the count for display.  

Control to Receive Link 
Specify the window control that will display the hit count. This is enabled only when Text 
Property is selected as the Assignment Type. 

Variable to Receive Link 
Specify the variable that will display the hit count. This is enabled only when Variable is 
selected as the Assignment Type. 



Web Templates 59

WebGuard Application Extension 

The WebGuard Application extension template provides an easy way to limit access to 
applications at the application and/or procedure level. The template provides a default 
logon window (this window may be overridden) used for logging in to an application and 
provides the ability to add a new user to the application.  

WebGuard supports the ability to define specific capabilities (rights) to each user. These 
capabilities are used by the WebGuardProc procedure extension template to validate the 
users rights to the requested information. WebGuard has the ability to work in conjunction 
with the GlobalDocumentHandling extension (Internet Toolkit). By combining these 
templates the ability to email a user about invalid logins to their account is enabled. 

The minimum requirement of keys and columns needed to use the WebGuard extension 
is defined below. The column names can be anything; they do not have to match the 
definition. The purpose of the keys and columns are the important issue. 

Required: 
 
CUSTOMER   FILE 
NameKey  KEY, Unique, Contains Name column 
Name    FIELD, must be a STRING, CSTRING, or PSTRING 
Password  FIELD, must be a STRING, CSTRING, or PSTRING 
Capability  FIELD, must be a STRING, CSTRING, or PSTRING 
Number   FIELD 

Optional: The following fields are required only when enabling their corresponding 
options. 

CountFailure  FIELD 
DaysToLock  FIELD 
MaxLogonAttempts FIELD 
AccountLocking FIELD 
LockedUntil  FIELD 

This extension template requires the global WebBuilder template. 

Populating the Template 

1. Press the Global icon button from the IDE.  

2. Press the Extensions button. 

3. Highlight the WebApplicationExtension extension template. 

4. Press the INSERT button and select the WebGuard extension. 
 



Internet Application Guide 60

 

The WebGuard template provides the following prompts: 

Guard Data File 

User Information Data File 
Select the file to be used as the customer (Customer) file. Use the ellipsis (…) to 
select the file from the file schematic or type in a file that exists in the file 
schematic. 

File Access Key 
Select the key that is made up of the customer name field. This key is used to 
retrieve a specific customer record from the Customer file. The key should be a 
unique key. Use the ellipsis (…) to select the key from the customer file or type in 
a key that exists in the file. 

Name Field 
Select the field to be used as the customer name field. This field specifies the 
customer name and must be defined as a STRING, CSTRING, or PSTRING. The 
customer name field must be the primary field in the File Access Key. Use the 
ellipsis (…) to select the field from the customer file or type in a field that exists in 
the file. 

Password Field 
Select the field to be used as the customer password field. This field will contain 
the customer’s defined password and must be defined as a STRING, CSTRING, 
or PSTRING. Use the ellipsis (…) to select the field from the customer file or type 
in a field that exists in the file. 



Web Templates 61

Capability Field 
Select the field to be used to validate customer capabilities. This field must be 
defined as a STRING, CSTRING, or PSTRING. Use the ellipsis (…) to select the 
field from the customer file or type in a field that exists in the file. Capabilities 
define the specific abilities available to a customer. For example, there may be 
several types of customers that have different rights in the system. There may be 
a PRIORITY customer and a STANDARD customer. If a PRIORITY customer 
logs into the system they will potentially see different menu choices than the 
STANDARD customer.  

Customer Number Field 
Select the field to be used as the customer number field. This field will contain 
the customer id used to identify a customer. Use the ellipsis (…) to select the 
field from the customer file or type in a field that exists in the file. This field should 
exist as part of a autoincrementing key so new users will have incremented 
customer numbers. 

Count Failure Field 
Select the field to be used as a count field. This field is incremented when an 
invalid logon occurs. When the invalid count exceeds the Maximum Logon 
Attempts, the customer account can be locked either for the specified number of 
days or until a specified date. Use the ellipsis (…) to select the field from the 
customer file or type in a field that exists in the file. 

Account Locking Field 
Select the field to be used as the lock status field. This field is set when the 
Maximum Logon Attempts is reached. Use the ellipsis (…) to select the field from 
the customer file or type in a field that exists in the file. 

Locked Until Field 
Select the field to be used to specify the date the customer account will be 
unlocked. This field is set when the Maximum Logon Attempts is reached. It is 
set to the current date plus the number specified in the Days To Lock template 
prompt. Use the ellipsis (…) to select the field from the customer file or type in a 
field that exists in the file. 



Internet Application Guide 62

Guard Options 

 

Enable Application Security 
Check this box to enable the WebGuard application extension for an application. By 
default this box is checked. When this box is unchecked, all WebGuard prompts are 
disabled. 

Web Enable 
Check this box to enable WebGuard login windows to work in a web application. By 
default this box is checked.  

Force Logon When Program Starts 
Check this box to have a logon window appear at the start of the application. By default 
this box is unchecked. 

Days To Lock 
Specify the number of days a customer account will be locked in the case when the 
Maximum Logon Attempts occur. 



Web Templates 63

Maximum Logon Attempts 
Specify the maximum number of invalid logon attempts. This is available when a Count 
Failure field is specified. Days To Lock and Account Locking Field must be entered in 
order for the Maximum Logon Attempts to be validated. 

Email Password 
Check the box to have an email sent to the customer when the maximum number of 
invalid logon attempts occur. See the Global Document Handling Internet ToolKit 
extension to setup email specifications. 

Default Capabilities 
Specifies a string, variable, or runtime expression using EVALUATE to use as the default 
capability settings for all customers logging in to the system. To specify a variable here, 
precede the entry with an exclamation point (!). To specify a runtime expression, precede 
the entry with an equal sign (=). 

Default Admin Logon 
Specifies a string, variable, or runtime expression using EVALUATE to use as the default 
Administrator logon name. To specify a variable here, precede the entry with an 
exclamation point (!). To specify a runtime expression, precede the entry with an equal 
sign (=). 

Default Admin Password 
Specifies a string, variable, or runtime expression using EVALUATE to use as the default 
Administrator password. To specify a variable here, precede the entry with an 
exclamation point (!). To specify a runtime expression, precede the entry with an equal 
sign (=). 

Default Admin Capabilities 
Specifies a string, variable, or runtime expression using EVALUATE to use as the default 
Administrator capabilites. To specify a variable here, precede the entry with an 
exclamation point (!). To specify a runtime expression, precede the entry with an equal 
sign (=). 

Ignore Capabilities Case 
Check this box to force the capabilities verification to be case insensitive. The default 
value for this prompt is case insensitive. 

Position File to Customer 
This is not implemented at this time. 

Allow New User Button 
Select Yes, No, or Use External Procedure to have the New User button shown on the 
window or not.  



Internet Application Guide 64

Default Guard Failure Actions 
Define the failure actions to take when a customer does not have the required capabilities 
to enter a specific area. These default options can be overridden using the WebGuard 
Procedure extenson. 

When WebGuard Fails 
Choose Show Message or Run a Procedure as the default failure action. Show message 
displays a message to the user to inform them about their capabilites. The message is 
defined in WebGuard.trn. 

Procedure Name 
Choose an existing procedure from the drop down listbox or type in a new procedure 
name. This procedure is executed when a user tries to enter a procedure with invalid 
capabilities. 

Override Logon Procedure 
Check this box to override the default logon window in order to provide a customized one. 

Procedure Name 
Choose an existing procedure from the drop down listbox or type in a new procedure 
name. This procedure is used to replace the default logon window and code. This 
procedure must return a return value of a BYTE. The return field returns the error 
severity. The severity levels can be found in ABERROR.INC. 

Global Objects 

The Global Objects tab lets you specify the default object names for the objects used by 
the ABC Templates. You can also specify the default classes to be used for the global 
objects. 

Classes 

The Classes tab lets you control the classes (and objects) the procedure uses. You may 
accept the default Application Builder Class and its object (recommended), or you may 
specify your own or a third party class. Deriving your own class can give you very fine 
control over the procedure when the standard Application Builder Class is not precisely 
what you need. See Template Overview—Classes Tab Options—Local for complete 
information on these options. 



Web Templates 65

WebGuardProc Procedure Extenstion 

The WebGuardProc procedure extension is available when the WebGuard application 
extension is added globally to the application. This procedure extension gives the ability 
to limit access to specific procedure based on defined user capabilities. 

This extension template requires the global WebGuard extension. 

Populating the Template 

1. RIGHT-CLICK on the procedure and choose Extensions from the popup menu.  

2. Press the INSERT button and select the WebGuardProc extension. 

Template Prompts 

 

The WebGuardProc extension provides the following prompts: 

Guard Procedure Entry 
Check this box to validate the users capabilities (rights) to access the procedure. 

Required Entry Capability 
Specify the required capability to gain access to the procedure.  

When Guard Fails 
Choose Default Action, Show Message or Run a Procedure as the failure action. The 
failure actions define the action to take when a customer does not have the required 
capabilities to enter a specific area. Show message displays a message to the user to 
inform them about their capabilites. The message is defined in WebGuard.trn. 

Procedure Name 
Choose an existing procedure from the drop down listbox or type in a new procedure 
name. This procedure is executed when a user tries to enter a procedure with invalid 
capabilities. 

 



Internet Application Guide 66

Control To Guard 
Specific controls can be guarded by this extension. Choose the control to guard from the 
drop down listbox. 

Required Control Capability 
Specify the required capability to gain access to the control.  

Guard Type 
A control can either be hidden or trigger a failure action if the capabilities requirement is 
not met. Select Hide or Trigger from the drop down listbox. 

When Guard Fails 
Choose Default Action, Show Message or Run a Procedure as the triggered failure 
action. The failure actions define the action to take when a customer does not have the 
required capabilities for the specified control. Show message displays a message to the 
user to inform them about their capabilites. The message is defined in WebGuard.trn. 

Procedure Name 
Choose an existing procedure from the drop down listbox or type in a new procedure 
name. This procedure is executed when a user tries access a control with invalid 
capabilities. 

WebVisitor 

 



Web Templates 67

The WebVisitor extension template is a global extension that allows an application to 
have temporary users (visitors). This concept is most often used in a shopping cart 
application where users can view products and use the shopping cart prior to signing in 
and processing an order. The template creates a temporary user record in the visitor file 
as well as the customer file. This template requires the WebGuard global extension. 

Enable Visitors 
Check this box to enable Visitors for the application. 

Derived Guard Class 
Select the class the template will use from the drop down listbox. You may accept the 
default VisitorClass (reccomended) or you may specify your own or a third party class. 
Deriving your own class can give you very fine control over the functionality when the 
standard Application Builder Class is not precisely what you need. 

Visitors File 
Select the file to be used as the visitor (Visitor) file. Use the ellipsis (…) to select the file 
from the file schematic or type in a file that exists in the file schematic. 

Visitor Idx Key 
Select the key to be uses as the Visitor Idx key. This key should be an auto-incrementing 
key that consists of the visitor idx field. Use the ellipsis (…) to select the field from the 
visitor file or type in a field that exists in the file. 

Visitor Idx Field 
Select the field to be used as the visitor idx field. Use the ellipsis (…) to select the field 
from the visitor file or type in a field that exists in the file. 

Visitor Customer Id Field 
Select the field to be used as the customer id field. This is used to relate the visitor record 
to the customer file. This is a one-to-one relationship. Use the ellipsis (…) to select the 
field from the visitor file or type in a field that exists in the file. 

Visitor Date Field 
Select the field to be used as the visitor date field. This is used to keep track of the date 
the visitor signed on to the system and is also used by the DeleteVisitorProcess to 
remove obsolete visitors. Use the ellipsis (…) to select the field from the visitor file or type 
in a field that exists in the file. 

Date Field Initial Value 
Specify the initial date value to be used when a record is added to the visitor file. This 
may be a value, function or variable. The default value is TODAY(). The initial value may 
also be set in the initial value of the date field in the dictionary. 



Internet Application Guide 68

Cart File 
Select the file to be used as the shopping cart (Cart) file. Use the ellipsis (…) to select the 
file from the file schematic or type in a file that exists in the file schematic. 

Cart Customer Key 
Select the key to be uses as the customer key. This key should consist of the customer id 
field. It is used to relate the cart file to the customer file. Use the ellipsis (…) to select the 
field from the cart file or type in a field that exists in the file. 

Cart Customer Id Field 
Select the field to be used as the customer id field. This field identifies the id of the 
customer who created the shopping cart. It is used to relate the Cart file to the Customer 
file. The relationship is a one-to-many relation. Use the ellipsis (…) to select the field from 
the shopping cart file or type in a field that exists in the file. 

Invoice File 
Select the file to be used as the invoice (Invoice) file. Use the ellipsis (…) to select the file 
from the file schematic or type in a file that exists in the file schematic. 

Invoice Customer Key 
Select the key to be uses as the customer key. This key should consist of the customer id 
field. It is used to relate the invoice file to the customer file. Use the ellipsis (…) to select 
the field from the invoice file or type in a field that exists in the file. 

Invoice Customer Id Field 
Select the field to be used as the customer id field. This field is used to relate the Invoice 
to a Customer. Use the ellipsis (…) to select the field from the invoice file or type in a field 
that exists in the file. 



Web Templates 69

DeleteVisitorProcess 

The DeleteVisitorProcess extension template will remove old non-existant visitors from 
the visitor table and all related tables. This extension may only be added to a PROCESS 
procedure. The following files must be in the file schematic of the procedure in order for 
all related tables to be cleaned of the obsolete visitor records. 

 

The PROCESS procedure should have the Actions for Process set to DELETE record. 
Check the Use RI constraints box. The record filter should be set to filter out visitor 
records older than x number of days. To delete all visitor records older than 7 days set 
the record filter to VIS:Dte < TODAY()-7. VIS:Dte is the Visitor Date Field defined above. 
To delay showing the process window, use the ExtendedProgressWindow extension. 

 



Internet Application Guide 70

Use Reservation System 
Check this box use the reservation system. 

Customer ID Field 
Select the field to be used as the customer id field. Use the ellipsis (…) to select the field 
from the invoice file or type in a field that exists in the file. 

Reservation Number Field 
Select the field to be used as the reservation number field. Use the ellipsis (…) to select 
the field from the invoice line file or type in a field that exists in the file. 

Product ID Field 
Select the field to be used as the invoice line product id field. Use the ellipsis (…) to 
select the field from the product line file or type in a field that exists in the file. 

Quantity Field 
Select the field to be used as the invoice line quantity field. Use the ellipsis (…) to select 
the field from the invoice line file or type in a field that exists in the file. 

 

 



TSSCRIPT 71

4 - TSSCRIPT 
Introduction 

The WebBuilder extensions use a new method of constructing the HTML representation 
of an application at runtime. You can still embed HTML in your Clarion App as before, but 
now there are extended capabilities that can be utilized after the app is compiled.  

This also provides the ability to change an application’s look and feel after the application 
is made without having to recompile the application. This allows you to easily make your 
Web application look like your Web site. When you change your Web site’s appearance, 
you can easily change the application’s look to match. 

The result is an application that controls business logic and data access, and HTML files 
which control the presentation layer. A non-programmer (i.e., webmaster) can edit the 
HTML skeletons without the Clarion developer. 

Skeletons 

Clarion’s Web Builder templates use a collection of HTML files called Skeletons. These 
files contain all the information needed to control construction of the delivered HTML 
page. These files are stored in the directory named in the Global Extension of your web-
enabled app. The current default is Skeleton. 

 

The collection of files is first read by the web-enabled application when it executes and all 
of the possible options are stored in an internal database.  

When it is time for the app to construct a page, the database is queried and the 
application uses a skeleton which best matches the control.and its properties. If you 



Internet Application Guide 72

examine your Skeleton folder, you will notice files such as button.htm, prompt.htm, 
string.htm, etc. While the filenames are irrelevant (unless you explicitly specify a 
WebStyle file to use for a control), examination of the meta tags in the HTML files will 
show you the properties of the skeleton. 

There are four primary properties of a control skeleton which are used to determine the 
best match at runtime: Control Type, Style, Capabilities, and Field Type. 

The first is determined by the WINDOW definition: 

Control Type 

The type of control populated on the WINDOW (e.g., BUTTON, STRING, ENTRY, etc.). 

EXAMPLE: 

<meta name=”ts-control” content=”button”> 

The other three are determined by values you enter in the Individual Overrides for a 
control which allows you to specify properties that the app will consider when finding the 
best match at runtime. 

The other three are determined by values you enter in the Individual Overrides for a 
control which allows you to specify properties that the app will consider when finding the 
best match at runtime. 

 

Skeleton to Use 

This “hard-wires” a specific HTML skeleton to the control. If you specify a filename here, 
no other properties are considered. 

Style 



TSSCRIPT 73

This property allows you to categorize skeletons into a common theme or style. For 
example, you can replicate all of the standard skeletons and add a “western” style to the 
new skeletons (e.g., images of cactus, wood grain buttons, etc.). 

Extra Capabilities 

This property allows you to specify certain capabilities in your skeleton. 

Examples: 

In the current skeletons, a TAB can be represented in two ways: 

with the selected TAB appearing on top and the rest hidden 

or 

with all TABs showing on a taller page. 

This is controlled by specifying the showall property in the Capabilities prompt in the 
Internet Connect template in the IDE (individual overrides for a control). 

In TAB.ALL.HTM, you will find these two meta-tags: 
 

<meta name=”ts-control” content=”tab”> 
<meta name=”ts-capabilities” content=”showall”> 

In TAB.ONE.HTM, you only find a meta-tag for the control Type: 

<meta name=”ts-control” content=”tab”> 

Therefore, if you specify the showall capability property in the Capabilities prompt in the 
WebBuilder template in Clarion, it signifies that TAB.ALL.HTM best matches and is the 
one used. 

You can use any words as capability keywords. A complete list of the ones included in 
the standard skeletons will be published later (after more are utilized). In this release the 
following are used: 

list.htm: <meta name=”ts-capabilities” content=”drop”> 
Supports droplists 

query.htm: <meta name=”ts-capabilities” content=”query”> 

Supports the query button control template 

splash.htm: <meta name=”ts-capabilities” content=”splash”> 

Supports a splash window which closes after the time specified in the APP 

tab.all.htm: <meta name=”ts-capabilities” content=”showall”> 



Internet Application Guide 74

Supports all TABs showing on a taller page. 

table.htm: <meta name=”ts-capabilities” 
content=”multicolumn,pageloaded,default”> 

Multi-column Listbox support (as an HTML table). 

Type of Field 

This property has not yet been utilized by the current set of skeletons, but its intended 
use is for fields which need special formatting such as dates, times, and monetary 
pictures. 

TSScript 

The SoftVelocity scripting language extends the HTML skeleton technology by allowing 
additional formatting and conditional options in a skeleton file. Although the scripting 
language is fairly simple in design, it is flexible enough to support complex logic and 
conditional generation of html from a Clarion application. A few examples are included at 
the end of this chapter. 

Basic Structure 

<TSSCRIPT> </TSSCRIPT> 

All script code is enclosed in a pair of tags. <TSSCRIPT> begins a block of code 
and </TSSCRIPT> terminates a block. These can be nested. 

Example: 
 
<TSSCRIPT tag=a attr=href replace=NAME value=Contents> 
<A HREF=”mailto:NAME”> 
<TSSCRIPT value=Contents> 
</TSSCRIPT> 
</A> 
</TSSCRIPT> 



TSSCRIPT 75

Patching 

One purpose of these skeleton files is to allow data to replace certain elements so that it 
can be delivered in a manner to display in a browser. 

tag=<name> 

which tag to target; defaults to plain text 

Example: 
 

<TSSCRIPT tag=a attr=href replace=NAME value=Contents> 
<A HREF=”http://NAME”> 
<TSSCRIPT value=Contents> 
</TSSCRIPT> 
</A> 
</TSSCRIPT> 

 

tag=* 

Specifies any tag 

attr=<name> 

 Specifies the tag attribute to target. The attribute is inserted if does not exists. 

replace=<string> 

The search string to replace with the value attribute. The entire search string is 
replaced. 

Example: 
 

<TSSCRIPT tag=a attr=href replace=NAME value=Contents> 
<A HREF=”http://NAME”>Click Here</A> 
</TSSCRIPT> 

 
 
patch=<wildcard> 

This is the same as replace, but can contain an asterisk (*) as a wildcard. For 
example, “think * should”. An asterisk can also match to start or end. 

block=<tag> 

 This restricts substitutions to within a specified <tag>. 



Internet Application Guide 76

value=expression 

 The computed value to replace with. 

text=string 

This is the literal text to replace. If omitted (i.e., no value) it removes an attribute 
or tag. 

type=text|value|html 

 

Repeats 

repeat=count 

 Duplicates the following code for the number of times specified (count). 

name=<id> 

 Create a local variable <id> which is bound to the count. 

 

Includes 
include=<condition> 

 Includes the matched items if the condition is true. 
 
omit=<condition> 

 Includes the matched items if the condition is false. 
 
scope=<name> 

 Selects the control being addressed by the html. 

 



TSSCRIPT 77

General 
 
when=<condition> 

 Specifies to only replace if the expression is true. 
 
phase=<phase,phase> 

Specifies which phase(s) the tag should be processed in. If not specified, it is 
processed as soon as the expressions can be evaluated. 

comment=”...” 

 Used to comment. 
 
<TSINCLUDE Name=”displayText.htm”> 

 Inserts another skeleton file at the location. 

META Tags 
The term meta is derived from the Greek word which denotes a nature of a higher order. 
Meta data typically consists of a number of pre-defined elements representing specific 
properties of a resource, and each of these elements can have one or more values. 
 

Meta tags were introduced into HTML to allow web authors to specify document 
properties without displaying them in a browser. The most common use of meta tags is to 
add keywords and a description to a static web page for search engines. Meta tags can 
be used to store any document-wide data. For example, you can specify a document’s 
author, creation date, and last modified date. Some HTML authoring tools automatically 
add some of these meta data elements. 

Clarion uses meta tags to supply properties to skeleton files. This data is later collected 
at runtime to determine which skeleton to use for a specific control. Meta tags are 
inserted between the <head> and </head> tags. 



Internet Application Guide 78

The following meta tag names are used in the skeleton files: 

 

<meta name=”ts-control” content=”controltype,controltype”> 

This tag specifies the control type(s) which the skeleton supports. The possible control 
types are: 

 

 
<meta name=”ts-capabilities” content=”capability,capability”> 

 This tag specifies the capabilities which the skeleton supports. 

 
<meta name=”ts-style” content=”style”> 

 This tag specifies the style(s) which the skeleton supports. 

 
<meta name=”ts-type” content=”fieldtype,fieldtype”> 

 This tag specifies the field type(s) which the skeleton supports. 



TSSCRIPT 79

WebStyle Examples 

Email String 

This skeleton formats data from a variable containing an email address so it is a “Mailto:” 
hyperlink. To use this skeleton, you would specify the email capability property in the 
Capabilities prompt in the Internet Connect template in the IDE (individual overrides for a 
control). 

 
<HTML> 
<head> 
<meta name=”ts-control” content=”sstring”> 
<meta name=”ts-capabilities” content=”email”> 
</head> 
<BODY> 
<!— email.string.htm — Start —> 
<TSSCRIPT value=”EmbedBeforeControl” type=html> 
</TSSCRIPT> 
<TSSCRIPT tag=a attr=href replace=NAME value=Contents> 
<A HREF=”mailto:NAME”> 
<TSSCRIPT value=Contents> 
</TSSCRIPT> 
</A> 
</TSSCRIPT> 
<TSSCRIPT value=”EmbedAfterControl” type=html> 
</TSSCRIPT> 
<!— email.string.htm — End —> 
</BODY> 
</HTML> 

Hyperlink String with terse text displayed 

This skeleton formats data from a variable containing a URLaddress so it displays as a 
hyperlink. To use this skeleton, you would specify the hyperlink capability property in the 
Capabilities prompt and the terse style property in the Style prompt in the Internet 
Connect template in the IDE (individual overrides for a control). 
 
<HTML> 
<head> 
<meta name=”ts-control” content=”sstring”> 
<meta name=”ts-capabilities” content=”hyperlink”> 
<meta name=”ts-style” content=”terse”> 
</head> 
<BODY> 
<!— link.string.htm — Start —> 
<TSSCRIPT value=”EmbedBeforeControl” type=html> 
</TSSCRIPT> 
<TSSCRIPT tag=a attr=href replace=NAME value=Contents> 
<A HREF=”http://NAME”>Web Site 



Internet Application Guide 80

</A> 
</TSSCRIPT> 
<TSSCRIPT value=”EmbedAfterControl” type=html> 
</TSSCRIPT> 
<!— link.string.htm — End —>.9 
</BODY> 
</HTML> 

 

Hyperlink String with verbose text displayed 

This skeleton formats data from a variable containing a URLaddress so it displays as a 
hyperlink. To use this skeleton, you would specify the hyperlink capability property in the 
Capabilities prompt and the verbose style property in the Style prompt in the Internet 
Connect template in the IDE (individual overrides for a control). 
 
<HTML> 
<head> 
<meta name=”ts-control” content=”sstring”> 
<meta name=”ts-capabilities” content=”hyperlink”> 
<meta name=”ts-style” content=”verbose”> 
</head> 
<BODY> 
<!— link.string2.htm — Start —> 
<TSSCRIPT value=”EmbedBeforeControl” type=html> 
</TSSCRIPT> 
<TSSCRIPT tag=a attr=href replace=NAME value=Contents> 
<A HREF=”http://NAME”> 
<TSSCRIPT value=Contents> 
</TSSCRIPT> 
</A> 
</TSSCRIPT> 
<TSSCRIPT value=”EmbedAfterControl” type=html> 
</TSSCRIPT> 
<!— link.string2.htm — End —> 
</BODY> 
</HTML> 
 
 

 

 



Skeleton Guide  81

5 - Skeleton Guide 
Introduction 

When using the Web Builder templates, special HTML files, called skeletons are used. As 
the name implies, these files have very little information in them, in other words, they are 
a “bare bones” template. Theare are used to merge with the Clarion application 
representation to create an HTML page. Their purpose is to produce HTML code for a 
single window control, window and application. The only exception is the Window.htm 
which produces HTML code for the basic page. 

These files contain a special scripting language known as TSSCRIPT. For those familiar 
with scripting languages, it has similar characteristics with JavaScript and XML, although 
it is not a complete version of either of these. You could also think of it as “templates” for 
HTML code. The runtime routines read attributes of TSSCRIPT tags. HTML page 
generation is done on the server when it generates the hard HTML file that is piped to the 
client.  The effect is favorable as it means lower bandwidth usage than Java and a 
reliable way to predict how a page and its contents are rendered. 

Skeletons can include other skeletons as the need arises. The benefit here is that you 
could author your own skeletons and include them with the shipping skeletons. 

Where are the Skeleton files? 

As shipped, the skeleton files are located in the Distrib\Skeleton folder. Under this folder 
are three style folders, Default, Fish and Wire. These are theme folders. For purposes of 
this chapter, the Default theme folder is examined. These are the files you will find in this 
folder: 
Button.htm   Check.htm   Box.htm 
Combo.htm   Detail.htm   Email.string.htm 
Group.htm   Entry.htm   Grid.htm 

Hotstring.htm   Image.htm   Item.htm 
List.htm   Menu.htm   Menubar.htm 
Panel.htm   Query.htm   Prompt.htm   
Radio.htm   Region.htm   Sheet.all.htm 
Sheet.one.htm   Sheet.two.htm   Spin.htm 
Sstring.htm   String.htm   Tab.all.htm 
Tab.one.htm   Table.htm   Text.htm 
Toolbar.htm   Window.htm   Splash.htm 



Internet Application Guide 82

Window.HTM 

This is the main skeleton. This controls the default look or appearance for all windows in 
your application. This skeleton controls the defaults (which can be overridden later).  

 

It is recommended that while you are studying the skeletons with this reference, you open 
them with any text editor, preferably one that understands HTML commands such as 
TextPad. 

 

This discussion (and the ones that follow) will work from the top of the skeleton files 
down. 

<TSSCRIPT value="EmbedMetaTags" type=html></TSSCRIPT> 

The <TSSCRIPT> is the beginning tag for using any TSSCRIPT language.  It requires 
the end </TSSCRIPT> tag. Everything in between these two tags are attributes. 
<TSSCRIPT> begins a section of code that is replaced with HTML at runtime. 

The above is an embed point for HTML embedded code in the skeletons. 

<meta name="ts-control" content="window,application"> 

This is standard HTML declaring HTTP meta name/value pairs that are associated with 
the HTML document. This is declaring a new meta name called ts-control and it is used in 
a window or application. 
 
<TSSCRIPT include="TimeOut != 0"> 
  <TSSCRIPT tag=meta attr=content replace="DELAY" value="TimeOut"> 
    <TSSCRIPT tag=meta attr=content replace="PROGRAM.TARGET" 
value="ProgramReference"> 
<meta HTTP-EQUIV="REFRESH" CONTENT="DELAY;URL=PROGRAM.TARGET"> 
    </TSSCRIPT> 
  </TSSCRIPT> 
</TSSCRIPT> 

This shows several things.  First, you can embed HTML code within TSSCRIPT tags.   

The include attribute on the first line means the code following is used only if the timeout 
value is not zero. This is very similar to JavaScript. The “!=” means “not equal to”.  

The next line replaces the DELAY attribute with the value in TimeOut. This is set in the 
global web template for the application. The default is 600 seconds or 10 minutes. 



Skeleton Guide  83

The next line takes the PROGRAM.TARGET attribute and replaces it with the value in 
ProgramReference.  This is the name of the application. 

<TSSCRIPT value="Text" patch="*" comment="patch title" > 

This line sets up when the value Text is replaced or patched.  The asterisk means 
replace in all occurrences. This affects the text placed on the caption or title bar. 

A few lines down you will see: 

<TSINCLUDE name="script.htm"> 

This tag inserts the SCRIPT.HTM file containing the JavaScript used within the 
WebBuilder HTML forms. It does not need an end tag. 

The following tags set up the default colors for different controls that can be placed on a 
page, in other words, it modifies the HTML for controls by setting color attributes, with a 
default value, to the control’s HTML code: 
 
<TSSCRIPT comment="Change the colors in the following lines to change the 
colors of the generated application"></TSSCRIPT> 
<TSSCRIPT tag="<* FinalColor=Border>"       attr=bgcolor 
value="'#dcdcdc'" comment="Border Color" phase=*> 
<TSSCRIPT tag="<* FinalColor=Header>"       attr=bgcolor 
value="'#a0b8c8'" comment="Header Color" phase=*> 
<TSSCRIPT tag="<* FinalColor=HeaderB>"      attr=bgcolor 
value="'#ccccff'" comment="Header Background Color" phase=*> 
<TSSCRIPT tag="<* FinalColor=Cell>"         attr=bgcolor 
value="'#ffffcc'" comment="Cell Color" phase=*> 
<TSSCRIPT tag="<* FinalColor=CellB>"        attr=bgcolor 
value="'#ffffff'" comment="Cell background color" phase=*> 
<TSSCRIPT tag="<* FinalColor=DisabledText>" attr=color   value="'Gray'"    
comment="Disabled text color" phase=*> 
<TSSCRIPT tag="<* FinalColor=HiLightCellColor>" attr=bgcolor 
value="'Yellow'"   comment="Highlight cell color" phase=*> 
<TSSCRIPT tag="<* FinalColor=HiLightTextColor>" attr=color   
value="'Black'"    comment="Highlight text color" phase=*> 
<TSSCRIPT tag="<* FinalColor=*>" attr=FinalColor remove phase=Runtime 
comment="Remove pseudo tags from the table entries"> 

The lines above should be self-evident (and they are explained in detail in the Common 
Questions and Answers section). The last line is what is interesting. 

This is taking whatever attributes for color are used and replacing them with the defaults 
set in the preceeding tag sets.  It does this at runtime as the remove phase suggests. 



Internet Application Guide 84

These two tag sets determine where images and public pages belong relative to the 
running program: 
 
<TSSCRIPT tag=img attr=src replace="IMAGES" value="Public" allowblank 
comment="Correct the path to images (the public directory)"> 
<TSSCRIPT tag=img attr=src replace="PUBLIC" value="Public" allowblank 
comment="Correct the path to the public directory"> 

These two replace attributes are filled in at runtime with the correct reference to the 
PUBLIC folder. It differs between the linked in broker and a live deployment, since they 
usually are in different folders. 

This means images must be in the PUBLIC folder and are referenced by “/AnImage.GIF” 
or “/SubFolder/MyImage.GIF”.  

The body tag introduces the body of the document. Look at this line: 

<body finalcolor="Page" bgcolor="white" onload="onBodyLoad()" 
onunload="onBodyUnload()"> 

This says that each page loaded gets a white background. The onload event occurs 
before the user agent (the browser) draws anything.  The parameter is a script. The 
onunload event whenever an action is taken that will change the current target such as a 
link, HTML form completion or browser close.  Again, the parameter is a script. Both are 
found in SCRIPTS.HTM. 

 
<TSSCRIPT tag=form attr=action value="ProgramReference"> 
<TSSCRIPT tag=form attr=method value="FormMethod"> 
<TSSCRIPT tag=form attr=enctype value="FormEncoding"> 

The lines above set up the attributes for the next line of code that begins the HTML form 
used for all WebBuilder pages. All actions returned to your application are done so 
through this HTML form or by direct JavaScript SUBMIT(). 

<form name="ClarionForm" method="GET" 
action="PROGRAM.TARGET" onsubmit="return (submitSuppress-- 
== 0);"> 

The next line creates a hiddenHTML form control with a value: 

<input type="HIDDEN" name="__Special__" value> 

The source below begins an HTML <table>, </table> tag set. 



Skeleton Guide  85

All HTML generated as a representation of your Clarion procedure window is enclosed 
within HTML tables. This provides a method to handle placement of controls and text for 
display within a browser: 
 
    <table finalcolor="Border" border="0" cellpadding="4" cellspacing="2" 
width="100%"> 
      <tr finalcolor="Header"> 
        <td width=99%><b> 
          <TSSCRIPT value=Title> 
            Page Title 
          </TSSCRIPT> 
        </b></td> 

Embedded within the HTML tables, used throughout the skeletons for control placement, 
you will find other tag sets such as: 
 

<th>, </th>  Denote a table header row. 
<tr>, </tr>  Denote a table row. 

Within these table row tags you will find <td>,</td> tag pairs. These tags create the 
individual cells within a table row. The "d" in "td" is for data. 

The HTML source above defines the top row of cells that represent the titlebar of your 
procedure window. This table row uses the predefined "Header" color, as discussed 
earlier,  for the background for the "Page Title." "Page Title" is the text you display in your 
procedure titlebar. 
 
        <td width=1%> 
          <TSSCRIPT tag=a attr=href replace="NAME" value="Name"> 
          <a href="javascript:icSubmit('NAME$EventCloseWindow');"><img 
alt="Close" WIDTH="18" HEIGHT="15" SRC="PUBLIC/x.gif" BORDER=0></a> 
          </TSSCRIPT> 
        </td> 

The <td> tag is a table data cell. The width of the cell is expressed as a percent of 
available space.  The percent means to use the smallest space possible, but if more is 
needed, then the size will grow as needed.  The <a> anchor tag is defining an href to 
some JavaScript for event processing. In other words, if this image is clicked, a close 
window event is signaled. 



Internet Application Guide 86

   <tr> 
     <td colspan="2"> 
       <img name="ZONE:Menubar" alt="Wizatrons will place menus in here"> 
     </td> 
   </tr> 

The colspan attribute attribute specifies the number of columns spanned by the current 
cell.  The image name is set to ZONE:Menubar, meaning that this column will contain the 
menu items. 

The rest of the skeleton is code covered in the preceeding text, but with different settings 
and the required end tags. 

Script.htm 

This skeleton sets up the needed JavaScript functions. It is found in the Skeleton sub 
folder. If you recall in the previous section for the window skeleton, there is a line that 
says: 

<TSINCLUDE name="script.htm"> 

This is a TSSCRIPT command to include another file.  This file contains JavaScript. Look 
at the first line: 

<SCRIPT type="text/JavaScript"> 

The <SCRIPT> tag is HTML. This introduces or starts a script.  The type attribute is there 
as there isn’t a standard for the language attribute. In this script, the text/JavaScript is the 
standard content type for JavaScript. Other examples of content types include text/html, 
image/png, image/gif, video/mpeg, text/css, and audio/basic.  

The next line begins an HTML comment that surrounds all the JavaScript commands and 
functions: 

<!-- Hides script from old browsers 

The end of this HTML comment can be found at the bottom of this file just above the last 
line. This may seem confusing at first, but the key to understand why this works is that 
you are working with two different languages.  The <!-- is the HTML comment. JavaScript 
comments start with double slashes (//) or slash-asterisk (/*) for multi-line comments.  
Thus, this entire file is ignored by browsers that cannot handle JavaScript. 

Also, you will notice the // JavaScript comment characters  are also commenting the end 
HTML comment. This is because JavaScript will try to interpret the --> characters and it 
can’t. It will result in JavaScript errors if left off. 

What is between these comments is the actual JavaScript used in the skeletons. If you 
wish to add your JavaScript functions, simply add them to this file. We recommend that 
you add a comment or two if you do. 



Skeleton Guide  87

The purpose of this chapter is not to teach you JavaScript. Since there are JavaScript 
functions listed throughout the skeletons, it is worth noting where you may find them. 

If you view source while your application is running, you will see all the JavaScript in the 
generated HTML file. 

Box.htm 

This is a small skeleton. Its sole purpose is to draw a box, or represents a BOX control. 
But where is the box drawn?  And around what? Lets examine some code: 

<TSSCRIPT tag=table attr=bgcolor value="FillColor" first> 

Some TSSCRIPT to define table background color attributes.  
 

<table border=2> 
  <tr> 
    <td> 
      <img width="300" height="200" name="ZONE:Contents" 
alt="Wizard will place controls in here"> 
    </td> 
  </tr> 
</table> 

These lines do the magic. The first defines the width of the border. In this case, it is 2 
pixels wide, all around the table. 

For each table row (<tr>) there is one table data cell <td>). In it is used the image tag with 
a fixed height and width. It is replaced at HTML generation time with values based on 
elements that would make up a table.  The above is sandwiched in TSSCRIPT tags. 

The other lines are discussed in the window.htm section. This skeleton is used when you 
use a BOX control on your window.  The generated HTML code appears like this: 

 
<!-- Box.htm -- Start --> 
<table border=2> 
  <tr> 
    <td> 
  String in a box 
    </td> 
  </tr> 
</table> 
<!-- Box.htm -- End --> 



Internet Application Guide 88

And this is what it looks like at runtime: 

 

Button.htm 

This is the skeleton that controls the look and feel of buttons. This skeleton actually has 
two sections. These sections start with these lines: 

 
<TSSCRIPT include="Icon != ''"> 
<TSSCRIPT omit="Icon != ''"> 

These lines are can be read as: 

"Include this section of code if ‘Icon’ is NOT blank." In other words, if this button includes 
an image, include the text between this TSSCRIPT tag and its ending </TSSCRIPT> tag. 

"Omit this section of code if ‘Icon’ is NOT blank." In other words, if this button includes an 
image, omit the text between this TSSCRIPT tag and its ending </TSSCRIPT> tag. 

The next series of code (starting with the section that has images on buttons) has these 
TSSCRIPT lines: 
 

  <TSSCRIPT include="Disabled"> 
    <TSSCRIPT tag=input attr=src value="Image"> 
      <INPUT type='image' ALT='Disabled' SRC="SRC"> 
    </TSSCRIPT> 
  </TSSCRIPT> 

This is script to have a placeholder for disabled buttons. It simply replaces the attributes 
of a particular button with its actual attributes. 



Skeleton Guide  89

The next line of script is for buttons that are not disabled.  This is done starting with this 
line: 

<TSSCRIPT omit="Disabled"> 

The script in this section simply checks for image placement, either left or right justified 
and writes the appropriate HTML code, including the spacing of the button, which is 
placed in a <table>. If there is no text on a button (image only), then the button is 
rendered accordingly. 

The remaining script deals with text only buttons. 

This skeleton is used for all button controls on a page and calls the JavaScript functions 
to process the button.  In the case of text only buttons, it uses the HTML submit attribute 
for input. No JavaScript is required in this case. 

Here is the resulting HTML code generated with a window with two buttons, one left 
justified, the other right: 
 
<TABLE cellpadding=0 cellspacing=0 border=0 WIDTH=100%><TR><TD 
WIDTH="8%"></TD> 
<TD WIDTH="29%" COLSPAN=2> 
 <table cellspacing=0 cellpadding=0><tr> 
 <td> 
 <a href="javascript:icSubmit('OKBUTTON');"><img 
SRC='/51/wizok.gif' BORDER=0 alt=OK></a> 
 </td> 
 <td> 
 <a href="javascript:icSubmit('OKBUTTON');">OK</a></td> 
 </tr></table> 
</TD> 
<TD WIDTH="7%"></TD> 
<TD WIDTH="29%"> 
 <table cellspacing=0 cellpadding=0><tr> 
 <td><a href="javascript:icSubmit('CANCELBUTTON');">Cancel</a></td> 
 <td> 
 <a href="javascript:icSubmit('CANCELBUTTON');"><img 
SRC='/51/wizcncl.gif' BORDER=0 alt=Cancel></a> 
 </td> 
 </tr></table> 
</TD> 



Internet Application Guide 90

Check.htm 

This is the check box skeleton. When you use a CHECK control, this skeleton is used to 
generate the HTML code for it. 
 

<TSSCRIPT include="Disabled"> 
  <font FinalColor=DisabledText> 
    <TSSCRIPT include="Checked"> 
      [X] 
    </TSSCRIPT> 
    <TSSCRIPT omit="Checked"> 
      [ ] 
    </TSSCRIPT> 
    <TSSCRIPT value=DisplayText> 
    Checkbox text 
    </TSSCRIPT> 
  </font> 
</TSSCRIPT> 

The above handles the disabled check boxes, whether they are checked or not. Notice 
that it includes the default colors from the window skeleton. 

The enabled checkbox uses JavaScript to sumbit the actions for the control: 
 

<TSSCRIPT omit="Disabled"> 
  <TSSCRIPT tag=input attr=name value="Name"> 
  <TSSCRIPT tag=input attr=id value="Name"> 
  <TSSCRIPT tag=input attr=checked when="Checked"> 
  <TSSCRIPT tag=input attr=onClick text="icSubmitForm()" 
when="SubmitOnChange"> 
    <input type="checkbox" value="1"> 
    <TSSCRIPT tag=label attr=for value="Name"> 
      <label for="above"> 
      <TSSCRIPT value=DisplayText>Checkbox text</TSSCRIPT> 
      </label> 
    </TSSCRIPT> 
  </TSSCRIPT> 
  </TSSCRIPT> 
  </TSSCRIPT> 
  </TSSCRIPT> 
</TSSCRIPT> 

The reason for the difference is that disabled controls do not generate events, thus it is 
overkill to have JavaScript render it when HTML is fine. 



Skeleton Guide  91

This is the HTML code generated at runtime: 
 

<TD WIDTH="43%"> 
  <!-- Check.htm -- Start --> 
    <input type="checkbox" value="1" name=CHECK1 id=CHECK1> 
      <label for='CHECK1'>Checked 
      </label> 
  <!-- Check.htm -- End --> 
</TD> 
<TD WIDTH="48%"> 
  <!-- Check.htm -- Start --> 
  <font color=Gray> 
      [X] 
     
    Checked - disabled 
  </font> 
  <!-- Check.htm -- End --> 
</TD> 
<TD WIDTH="4%"></TD> 
</TR><TR><TD WIDTH="5%"></TD> 
<TD WIDTH="43%"> 
  <!-- Check.htm -- Start --> 
    <input type="checkbox" value="1" name='CHECK1_2' 
id='CHECK1_2'> 
      <label for='CHECK1_2'>Un Checked 
      </label> 
  <!-- Check.htm -- End --> 
</TD> 
<TD WIDTH="48%"> 
  <!-- Check.htm -- Start --> 
  <font color=Gray> 
      [ ] 
     
    Un Checked - disabled 
  </font> 
  <!-- Check.htm -- End --> 
</TD> 

 
 



Internet Application Guide 92

And this is how it looks in a browser: 

 

Combo.htm 

This is the skeleton for COMBO controls.  

Detail.htm 

This is used when making shopping cart applications. 

Email.String.htm 

This skeleton is used to make an anchor tag (<a>) with an href attribute of 
mailto:<EmailAddress>. The EmailAddress needs a properly formatted email address 
and parameters. 

Entry.htm 

This skeleton is used for ENTRY controls. For each entry control populated on a window, 
the skeleton produces the correct HTML code for the entry. It incorporates the attributes 
for the control. 

If an entry control is read-only, then these skeleton code takes care of that: 
 
<TSSCRIPT include="Disabled || ReadOnly"> 
  <TSINCLUDE Name="displayText.htm"> 
</TSSCRIPT> 

 This just uses a different skeleton for these types of controls, they just display them as  
text. 



Skeleton Guide  93

This section is for entry controls that are not read-only or disabled: 
 
<TSSCRIPT omit="Disabled || ReadOnly"> 
  <TSSCRIPT tag=input attr=name value="Name"> 
  <TSSCRIPT tag=input attr=value value="DisplayText"> 
  <TSSCRIPT tag=input attr=type text="Password" when="Password"> 
  <TSSCRIPT tag=input attr=size value="(Width+2)/4"> 
  <TSSCRIPT tag=input attr=onChange text="icSubmitForm()" 
when="SubmitOnChange"> 
  <TSSCRIPT tag=input attr=onFocus text="this.select()" 
when=SelectOnFocus> 

The above simply gets the entry name, its prompt text, password type entries (if 
applicable), default width and set up the JavaScript to detect the event when it is 
selected.  
 
<TSSCRIPT include="Req"> 
      <table border="0" bgcolor="#FF0000" cellspacing="1" cellpadding="0"> 
        <tr><td> 
          <input type=text> 
        </td></tr> 
      </table> 
    </TSSCRIPT> 
    <TSSCRIPT omit="Req"> 
      <input type=text> 
    </TSSCRIPT> 
  </TSSCRIPT> 
  </TSSCRIPT> 
  </TSSCRIPT> 
  </TSSCRIPT> 
  </TSSCRIPT> 
  </TSSCRIPT> 
</TSSCRIPT> 

The next section places a red border around the entry control if the entry is required. The 
other attrbutes describe how thick the border is, how far around the entry control the 
border is and any padding. 



Internet Application Guide 94

Here is what a entry page could look like: 

 

And this is the HTML code for the company name in the above example: 
 
<!--Entry.htm -- Start --> 
  <input type=text name='CUS_COMPANY' size=22 onFocus='this.select()'> 
<!--Entry.htm -- End --> 

The following HTML code is for the required entries: 
 
<!--Entry.htm -- Start --> 
   <table border="0" bgcolor="#FF0000" cellspacing="1" cellpadding="0"> 
   <tr><td> 
   <input type=text name='CUS_FIRSTNAME' size=22 onFocus='this.select()'> 

   </td></tr> 
   </table> 
<!--Entry.htm -- End --> 

Grid.htm 

This is the grid skeleton, used when a browse grid control is placed on a LIST control. 



Skeleton Guide  95

Group.htm 

This is the skeleton used when a GROUP control is populated on a window, Group 
controls can be used to group related subjects together or they are used with radio 
buttons. 
 
<TSSCRIPT include=Boxed> 
  <TSSCRIPT tag=table attr=bgcolor value="BorderColor" first> 
  <table width="100%"> 
    <tr> 
      <td> 

The above first checks to see if the group is boxed. If it is, then it needs to determine the 
border color of the box. The table width attribute is expressed as a percent of available 
space, in this case, use all that is available. 

The next section simply defines how wide the border is and what the text of the group 
structure is based on the window control. 

        <table border="0" width="100%"> 

This next section shows an interesting aspect of TSSCRIPT. In this case, everything that 
is between the beginning and end tags is replace by real values, but only if there is some 
text to substitute. 
 
           <TSSCRIPT include="DisplayText!=''"> 
            <tr finalcolor="Header"> 
              <td><b><TSSCRIPT value=DisplayText> 
                Header Text 
                </TSSCRIPT> 
              </b></td> 
            </tr> 
          </TSSCRIPT> 

If the boxed attribute is not set, then this part of the skeletons is used: 
 
<TSSCRIPT omit=Boxed> 
  <img width="500" height="261" name="ZONE:Contents" alt="Wizatrons will 
place controls in here"> 
</TSSCRIPT> 



Internet Application Guide 96

The following HTML code is what the skeletons generate for a simple group: 
 
<!--Group.htm -- Start --> 
  <table width="100%"> 
    <tr> 
      <td> 
        <table border="0" width="100%"> 
            <tr bgcolor='#a0b8c8'> 
              <td><b> 
                Group 1 
              </b></td> 
            </tr> 
            <tr> 
              <td> 
  String in group one</td> 
            </tr> 
        </table> 
      </td> 
    </tr> 
  </table> 
<!--Group.htm -- End --> 

And this is for the radio groups: 
 
<!--Group.htm -- Start --> 
  <table width="100%"> 
    <tr> 
      <td> 
        <table border="0" width="100%"> 
            <tr bgcolor='#a0b8c8'> 
              <td><b> 
                Group Two 
              </b></td> 
            </tr> 
            <tr> 
              <td> 
<TABLE cellpadding=0 cellspacing=0 border=0><TR><TD WIDTH="13%"></TD> 
<TD WIDTH="48%"> 
<!-- Radio.htm -- Start --> 
  <input type="Radio" name='OPTION1$Choice' id='OPTION1_RADIO1' 
value=1><label for='OPTION1_RADIO1'>Radio 1</label> 
  <!-- Radio.htm -- End --> 
</TD> 
<TD WIDTH="39%"></TD> 
</TR><TR><TD WIDTH="13%"></TD> 
<TD WIDTH="48%"> 
<!-- Radio.htm -- Start --> 
  <input type="Radio" name='OPTION1$Choice' id='OPTION1_RADIO2' 
value=2><label for='OPTION1_RADIO2'>Radio 2</label> 
  <!-- Radio.htm -- End --> 
</TD> 



Skeleton Guide  97

<TD WIDTH="39%"></TD> 
</TR></TABLE></td> 
            </tr> 
        </table> 
      </td> 
    </tr> 

  </table> 
<!--Group.htm -- End --> 

If you notice, it includes the radio skeleton (see the section on radio skeletons). This is 
what the HTML code looks like at runtime: 

 

Hotstring.htm 

This skeleton is designed to be used with the template interface. Notice these two lines: 
 
<meta name="ts-control" content="sstring"> 
<meta name="ts-capabilities" content="hotlink"> 

They align with the two template entry controls, control and capabilities. This creates a 
link from a string. 

Image.htm 

This small skeleton handles images on your page.  

Take a look at these lines (which is really all there is to this skeleton): 
 
<!-- Image.htm -- Start --> 
<TSSCRIPT tag=a attr=href value="'javascript:icSubmit(\''+Name+'=1\')'" 
when=SubmitOnChange> 
<TSSCRIPT tag=img attr=alt value="AltText"> 
<TSSCRIPT tag=img attr=src value="Image"> 
<TSSCRIPT tag=img attr=width value="PixelWidth"> 
<TSSCRIPT tag=img attr=height value="PixelHeight"> 
<TSSCRIPT tag=img attr=border text="0" when=SubmitOnChange> 
<a><img></a> 

The first line sets up the JavaScript to process an event, such as when a record is 
changed, thus a refresh of the image is needed. 

The next lines set up the ALT text, the actual image, the image height and width (in 
pixels) and a border.  All these are replaced in the last line, like this: 
 
<!-- Image.htm -- Start --> 
<a><img src='/50/Rose.gif' width=155 height=106></a> 
<!-- Image.htm -- End --> 



Internet Application Guide 98

And this is what an image looks like in the browser: 

 

Item.htm 

This skeleton produces the menu items. If the menu item is a separator, then it produces 
the HTML tag for horizontal line, <HR>. If the menu item is disabled, it displays the text in 
the disabled color (see the Window skeleton). 

If the menu item is clicked, this is detected by the JavaScript icSubmit function (see the 
Scripts skeleton). 

List.htm 

This sets up a drop list control. The list itself is populated by another skeleton (see the 
Select skeleton). 

Menu.htm 

This skeleton handles the menus. 

The generated HTML looks like this: 
 
<!--Menubar.htm -- Start --> 
<table border=0> 
  <tr valign=top> 
<td> 
  <table border=0 bgcolor='#dcdcdc'> 
    <tr bgcolor='#a0b8c8'> 
      <td><b> 
      Browse 
      </b></td> 
    </tr> 



Skeleton Guide  99

    <tr><td> 
      <a href="javascript:icSubmit('BROWSEBROWSECUSTOMERS');"> 
        <NOBR>Customers</NOBR> 
      </a><br> 
    </td></tr> 
  </table> 
</td> 
  </tr> 
</table> 

<!--Menubar.htm -- End --> 

The above code looks like this: 

 

This is the skeleton code that produced the above: 
 
<!--Menu.htm -- Start --> 
<form> 
<TSSCRIPT value="EmbedBeforeControl" type=html> 
</TSSCRIPT> 
<td> 
  <table FinalColor=Border border=0> 
    <tr FinalColor=Header> 
      <td><b> 
      <TSSCRIPT value=DisplayText> 
      <p> 
      This is the text 
      </p> 
      </TSSCRIPT> 
      </b></td> 
    </tr> 
    <tr FinalColor=CellColor><td> 
   <img name="ZONE:Contents" alt="Wizatrons will place controls in here"> 
   </td></tr> 



Internet Application Guide 100

  </table> 
</td> 
<TSSCRIPT value="EmbedAfterControl" type=html> 
</TSSCRIPT> 
</form> 
<!--Menu.htm -- End --> 

Menubar.htm 

This skeleton is little different than menu. It is used only when you do not have a drop 
menu, but a menu bar with items only.  The following HTML code is generated at runtime: 
 
<!--Menubar.htm -- Start --> 
<table border=0> 
  <tr valign=top> 
      <a href="javascript:icSubmit('EXIT');"> 
        <NOBR>Exit!</NOBR> 
      </a><br> 
  </tr> 
</table> 
<!--Menubar.htm -- End --> 

This is what is looks like in the browser: 

 

The skeleton that produced it is as follows: 
 
<!--Menubar.htm -- Start --> 
<TSSCRIPT value="EmbedBeforeControl" type=html> 
</TSSCRIPT> 
<table border=0> 
  <tr valign=top> 
    <img name="ZONE:Contents[width=1%]" alt="Wizatrons will place 
controls in here"> 
  </tr> 



Skeleton Guide  101

</table> 
<TSSCRIPT value="EmbedAfterControl" type=html> 
</TSSCRIPT> 
<!--Menubar.htm -- End --> 

Panel.htm 

This skeleton creates panel controls in HTML. The effect is that you can use this control 
to create nice backgrounds around controls. 

The skeleton code is as follows: 
 
<table FinalColor=Border> 
  <tr> 
    <td> 
      <table FinalCoor=Header border="0" cellpadding="0" cellspacing="0" width="100%"> 
        <tr> 
        <td><img width="300" height="200" name="ZONE:Contents" 
alt="Wizatrons will place controls in here"></td> 
        </tr> 

      </table> 
    </td> 
  </tr> 
</table> 

Which makes it look similar to this: 

 

The actual HTML code is as follows: 
 
<!-- Panel.htm -- Start --> 
<head> 
</head> 
<table bgcolor='#dcdcdc'> 
  <tr> 



Internet Application Guide 102

    <td> 
      <table FinalCoor=Header border="0" cellpadding="0" cellspacing="0" 
width="100%"> 
        <tr> 
        <td> 
  String in a panel</td> 
        </tr> 
      </table> 

    </td> 
  </tr> 
</table> 
<!-- Panel.htm -- End --> 

If you notice, there is no TSSCRIPT for the panel, yet it uses “variables” set by 
TSSCRIPT commands.  These come from the window skeleton. 

Prompt.htm 

The Prompt skeleton includes the DisplayText skeleton to do its work. Other than two 
embed points, that is all there is. See DisplayText. 

Query.htm 

The Query skeleton is used for QBE controls and is used when a user is performing QBE 
functions. The HTML produced is as follows: 
 
<!-- Start of Query.htm --> 
    <input type="HIDDEN" value='0' name='Feq1020$Choice'> 
  <input type="SUBMIT" value='    ' name='Feq1020' 
onClick='cycleQuery(this, ClarionForm.Feq1020$Choice)'> 
<!-- End of Query.htm --> 

This code is produced for each control in the query dialog. The QBE template default is 
for a form interface and this is how it is rendered in a browser: 



Skeleton Guide  103

 

 
You cannot use the list version of QBE in a web application as it uses edit-in-place.  You 
will get a warning message about this if you do. 

The buttons to the right of the entries set the matching rules (greater than, less than, etc) 
and work just like the desktop version.  Each press of these buttons cycles through all the 
valid choices.  This is done by these lines of skeleton code: 
 
<TSSCRIPT tag=input attr=onClick replace="NAME" value="Name"> 
  <input type="SUBMIT" value="    " name="NAME" onClick="cycleQuery(this, 
ClarionForm.NAME$Choice)"> 
</TSSCRIPT> 

It calls a JavaScript function called cycleQuery. This function is defined in the scripts.htm 
file.  The function is simple and if you examine the code, it is not too dissimilar to the way 
it would be coded in Clarion: 
  function cycleQuery(cur, choice) 
  { 
    submitSuppress++; 
    choice.value = (Number(choice.value) + 1) % 5 
    switch (Number(choice.value)) 
    { 
    case 0: cur.value = '    '; break; 
    case 1: cur.value = ' = '; break; 
    case 2: cur.value = '>='; break; 
    case 3: cur.value = '<='; break; 
    case 4: cur.value = '<>'; break; 

    } 
  } 

The switch command is the same as the CASE in Clarion.  The case is the same as the 
OF. 



Internet Application Guide 104

Radio.htm 

This is the radio button skeleton. It is used when radio buttons are displayed. While radio 
buttons are used on lists to indicate the highlighted row, this is done with another 
skeleton. See Table.htm. 

For option groups (groups that contain radio buttons), the following is the HTML 
generated for each radio button: 
 
<!-- Radio.htm -- Start --> 
  <input type="Radio" name='OPTION1$Choice' id='OPTION1_RADIO1' 
value=1><label for='OPTION1_RADIO1'>Radio 1</label> 
  <!-- Radio.htm -- End --> 



Skeleton Guide  105

It looks like this when running in a browser: 

 

The skeleton code for generating HTML radio buttons is as follows: 
<TSSCRIPT omit="Disabled"> 
  <TSSCRIPT tag=input attr=id value="Name"> 
  <TSSCRIPT tag=input attr=Name replace="NAME" value="Container.Name"> 
  <TSSCRIPT tag=input attr=checked when="Container.ChoiceFEQ==FEQ"> 
  <TSSCRIPT tag=input attr=disabled when="Disabled"> 
  <TSSCRIPT tag=input attr=onClick text="icSubmitForm()" 
when="SubmitOnChange || Container.SubmitOnChange"> 
  <TSSCRIPT tag=input attr=value value="ChildIndex"> 
  <input type="Radio" name="NAME$Choice"> 
  <TSSCRIPT tag=label attr=for value="Name"> 
    <label> 
      <TSSCRIPT value=DisplayText> 
      </TSSCRIPT> 
    </label> 
  </TSSCRIPT> 

The above is used only when the radio button is enabled. If disabled, it includes the 
DisplayText skeleton. 

The various TSSCRIPT lines gather information about the radio button, including it’s Field 
Equate and setting up event handling via a JavaScript function. 

This is so that the HTML code that declares an input of radio type, also gives a name to 
this control.  As you can see in the generated HTML, the TSSCRIPT commands above 
build the input tag. 

Region.htm 

This skeleton is used for REGION controls. 



Internet Application Guide 106

Sheet.all.htm 

Not documented at this time. 

Sheet.one.htm 

This is the default skeleton used when a sheet control is used. Even with sheet controls 
containing other sheet controls on your window, this skeleton will generate the HTML 
code to render it in your browser. 

This skeleton does not do much as the code below shows: 
 
<!-- Sheet One.htm -- Start --> 
<TSSCRIPT value="EmbedBeforeControl" type=html></TSSCRIPT> 
<IMG name="ZONE:Default:Contents" alt="Wizatrons will place controls in 
here"> 
<TSSCRIPT value="EmbedAfterControl" type=html></TSSCRIPT> 
<!-- Sheet One.htm -- End --> 

The window skeleton causes the tab skeleton to be included in the sheet.  See Window 
and Tab skeleton sections. 

Sheet.two.htm 

Not documented at this time. 

Spin.htm 

This skeleton gathers data and attributes about spin controls on a window and renders 
the HTML code to produce the control, complete with event trapping. 

There are two major sections (if the control is enabled, otherwise it uses the DisplayText 
skeleton to represent a disabled control  - See DisplayText skeleton). 

If the spin control does not have a From entry, this section of skeleton code is used: 
 
  <TSSCRIPT Omit="From!=''"> 
    <table cellpadding="0" cellspacing="0"><tr><td> 
    <TSSCRIPT tag=input attr=value value="DisplayText"> 
    <TSSCRIPT tag=input attr=name value="Name"> 
    <TSSCRIPT tag=input attr=size value="(Width+2)/4"> 
    <input type="TEXT" value="Text" name="NAME"> 
    </TSSCRIPT> 
    </TSSCRIPT> 
    </TSSCRIPT></td> 
    <TSSCRIPT tag=input attr=onClick replace="NAME" value="Name"> 
    <TSSCRIPT tag=input attr=onClick replace="RANGEHIGH" 
value="RangeHigh"> 
    <TSSCRIPT tag=input attr=onClick replace="RANGELOW" value="RangeLow"> 



Skeleton Guide  107

    <TSSCRIPT tag=input attr=onClick replace="STEP" value="Step"> 
    <td><input type="submit" value="&lt;" 
onclick="spin(ClarionForm.NAME,-STEP,RANGEHIGH,RANGELOW);"></td> 
    <td><input type="submit" value="&gt;" 
onclick="spin(ClarionForm.NAME,+STEP,RANGEHIGH,RANGELOW);"></td> 
    </TSSCRIPT> 
    </TSSCRIPT> 
    </TSSCRIPT> 
    </TSSCRIPT> 
    </tr></table> 
  </TSSCRIPT> 

This is the generated HTML code: 
 
<!-- Spin.htm -- Start --> 
 <table cellpadding="0" cellspacing="0"><tr><td> 
 <input type="TEXT" value='5.00' name='DTL_QUANTITYORDERED' size=14></td> 
 <td><input type="submit" value="&lt;" 
onclick='spin(ClarionForm.DTL_QUANTITYORDERED,-1,999,1);'></td> 
 <td><input type="submit" value="&gt;" 
onclick='spin(ClarionForm.DTL_QUANTITYORDERED,+1,999,1);'></td> 
</tr></table> 
<!-- Spin.htm -- End --> 

The above will produce a spin box like the following image: 

 

 
 



Internet Application Guide 108

If the From entry is used (meaning it gets its values from a Queue), the following skeleton 
code is used to produce the HTML code at runtime: 
 
<TSSCRIPT Include="From!=''"> 
    <TSSCRIPT tag=input attr=name value="Name"> 
    <TSSCRIPT tag=input attr=value value="DisplayText"> 
    <TSSCRIPT tag=input attr=size value="(Width+2)/4"> 
    <TSSCRIPT tag=input attr=onChange text="icSubmitForm()" 
when="SubmitOnChange"> 
    <TSSCRIPT tag=input attr=onFocus text="this.select()" 
when=SelectOnFocus> 
      <TSSCRIPT include="Req"> 
        <table border="0" bgcolor="#FF0000" cellspacing="1" 
cellpadding="0"> 
          <tr><td> 
            <input type=text> 
          </td></tr> 
        </table> 
      </TSSCRIPT> 
      <TSSCRIPT omit="Req"> 
        <input type=text> 
      </TSSCRIPT> 
    </TSSCRIPT> 
    </TSSCRIPT> 
    </TSSCRIPT> 
    </TSSCRIPT> 
    </TSSCRIPT> 
  </TSSCRIPT> 

Splash.htm 

This skeleton produces the HTML for splash procedures. This skeleton is a different 
version of the window skeleton, as splash procedures usually have a different look and 
feel than the appearance of the rest of the program.  To this end, there are settings that 
are different than the window skeleton. 

 

If you like the style of the splash skeleton, you can use it as the skeleton for the window 
of any procedure. You can do this by setting the window override in the local extension. 

Only the differences between this skeleton and the window skeleton are covered in this 
section.  See Window.htm for more information. 



Skeleton Guide  109

Outside of some TSSCRIPT differences, the following skeleton code is what makes the 
difference: 
 
<CENTER> 
<table bgcolor="#ccccff" border="1" width=60%> 
  <tr> 
    <td valign="center" align="center"> 
   <img name="ZONE:Contents" alt="Wizatrons will place controls in here"> 
    </td> 
  </tr> 
  <tr> 
    <td valign="center" align="center"> 
      <TSSCRIPT tag=a attr=href value="ProgramReference"> 
        <A HREF="PROGRAM.TARGET">Continue</A> 
      </TSSCRIPT> 
    </td> 
  </tr> 
</table> 
</CENTER> 

Most of the above is cosmetic (colors, alignments, borders, etc.). Inspect the <A HREF> 
line. This adds a hyperlink that looks like this at runtime: 

        <A HREF='/MYPROGRAM.EXE.80'>Continue</A> 

Sstring.htm 

Not documented at this time. 

String.htm 

A very simple skeleton that includes another skeleton.  See DisplayText. 

Tab.all.htm 

Not documented at this time. 

Tab.one.htm 

This skeletons shows the tabs on a sheet. Each tab is actually a link with a background 
color. This skeleton does quite a lot to enure that the tabs work like the program’s 
desktop equivalent. 
 
<!-- Tab One.htm --> 
<TSSCRIPT local name=SelectedTab value="phase=='runtime' ? 
Container.Choice : ChildIndex"> 

This line sets up the current tab with the current key used for sorting. At runtime, the 
attributes are replaced by the data in the program. 



Internet Application Guide 110

A few lines down and you see this TSSCRIPT line: 

  <TSSCRIPT omit="Wizard"> 

This means that this procedure is not a Wizard style procedure. If it is, then all remaining 
skeleton code is not used. 

This line sets up a “loop” to process each tab on the procedure: 

 <TSSCRIPT repeat times="Container.NumTabs" name=curTab> 

This means that for every tab placed on the list, the remaining skeleton code sets up the 
HTML code to be generated at runtime. 

Now examine this code a few lines down: 
 
    <td FinalColor=Header nowrap> 
      &nbsp;&nbsp;&nbsp; 
      <b><TSSCRIPT value="thisTab.DisplayText">SELECTEDTAB</TSSCRIPT></b> 
      &nbsp;&nbsp;&nbsp; 
    </td> 

This code uses some HTML code to space the text on the tabs and ensure they stay on 
one line This is done with &nbsp, which means “non-breaking space”. If this is not used, 
the text on tabs could wrap unpredictably. Plus, it ensures that there is white space 
before and after the text.  This makes the text look even on all sides of the tab. 

The next section sets up the events for selecting a different tab: 
    <td FinalColor=Border nowrap> 
              <TSSCRIPT tag=a attr=* replace="PROGRAM" 
value="ProgramReference"> 
                <TSSCRIPT tag=a attr=* replace="NAME" 
value="Container.Name"> 
                  <TSSCRIPT tag=a attr=* replace="CURTAB" value="curTab"> 
      &nbsp;&nbsp;&nbsp; 
      <a href="javascript:icSubmit(&quot;NAME$Choice=CURTAB&quot;);"> 
      <TSSCRIPT value="thisTab.DisplayText">UNSELECTEDTAB</TSSCRIPT> 
      </a> 
      &nbsp;&nbsp;&nbsp; 
                  </TSSCRIPT> 

                </TSSCRIPT> 
              </TSSCRIPT> 
    </td> 

This section takes the values in the program (the TSSCRIPT lines), adds some non-
breaking spaces (for tab separation). It then uses a JavaScript function to process the 
event for when a new tab is chosen. 



Skeleton Guide  111

At runtime, the following HTML is generated (edited for content): 
 
<!-- Tab One.htm --> 
<table border="0" cellpadding="0" cellspacing="0" width="100%"> 
  <tr align="left"><td> 
    <table border="0" cellpadding="2" cellspacing="0" width="1%"><tr> 
    <td nowrap bgcolor='#a0b8c8'> 
      &nbsp;&nbsp;&nbsp; 
      <b>General</b> 
      &nbsp;&nbsp;&nbsp; 
    </td> 
    <td>&nbsp;</td> 
    <td nowrap bgcolor='#dcdcdc'> 
      &nbsp;&nbsp;&nbsp; 
<a href='javascript:icSubmit(&quot;CURRENTTAB$Choice=2&quot;);'>General 
(cont.) 
</a> 
&nbsp;&nbsp;&nbsp; 
    </td> 
    <td>&nbsp;</td> 
    <td nowrap bgcolor='#dcdcdc'> 
      &nbsp;&nbsp;&nbsp; 
<a href='javascript:icSubmit(&quot;CURRENTTAB$Choice=3&quot;);'>Orders 
</a> 
&nbsp;&nbsp;&nbsp; 
    </td> 
    <td>&nbsp;</td> 
    <td>&nbsp;</td> 
  </tr> 
  </table></td></tr> 
  <tr> 
    <td bgcolor='#a0b8c8'> 
<TABLE cellpadding=0 cellspacing=0 border=0 WIDTH='100%'><TR><TD 
WIDTH="2%"></TD> 
<TD WIDTH="27%"> 
  Company: 
</TD> 
<TD WIDTH="40%" COLSPAN=3> 
<!--Entry.htm -- Start --> 
!Entry controls here 
<!--Entry.htm -- End --> 
</TD> 
<TD WIDTH="10%"></TD> 
 
<!-- /Tab One.htm --> 



Internet Application Guide 112

The following is what it looks like: 

 

Table.htm 

This skeleton handles the way LIST controls on browse procedures are rendered with 
HTML. 

This group of skeleton code sets the text for each column header: 
 
            <TSSCRIPT repeat times="FromColumns" name=column> 
              <th> 
                <TSSCRIPT value="ColumnHeader[column-1]"> 
                   HEADERTEXT 
                </TSSCRIPT> 
              </th> 
            </TSSCRIPT> 

This set of code a little further down, produces the radio buttons that indicate the current 
row on the list: 
 
<TSSCRIPT tag=input attr=name replace="NAME" value="Name"> 

<TSSCRIPT tag=input attr=value value="row"> 
<TSSCRIPT tag=input attr=checked value="1" when="Choice==row"> 
<TSSCRIPT tag=input attr=id replace="FEQ" value="Name"> 



Skeleton Guide  113

<TSSCRIPT tag=input attr=id replace="ROWNO" value="row"> 
<TSSCRIPT tag=input attr=onClick text="icSubmitForm()" 
when="SubmitOnChange"> 
                          <input type="radio" value="ROW" 
name="NAME$Choice" id="FEQ$ROWNO"> 

Further down is the code to format the text that appears in each cell of the list: 
 
<TSSCRIPT local name="curColor" value="CellForeColor[row-1][column-1]"> 
<TSSCRIPT value="'<FONT color=' + MakeColor(curColor) + '>'" type=html 
when="curColor !=0"></TSSCRIPT> 
<TSSCRIPT tag=label attr=for replace="FEQ" value="Name"> 
<TSSCRIPT tag=label attr=for replace="ROWNO" value="row"> 
  <LABEL FOR="FEQ$ROWNO"> 
<TSSCRIPT value="CellText[row-1][column-1]=='' ? '&nbsp;' : CellText[row-
1][column-1]" phase=runtime> 
  CELLTEXT 

After the closing tags, the navigation buttons are placed at the bottom of the list: 

<TSSCRIPT include="NavigationControls"> 

The navigation buttons are worthless if there is no event processing for each button.  This 
is done with calls to JavaScript functions: 
 
<TSSCRIPT tag=a attr=href replace="NAME" value="Name"> 
<a href="javascript:icSubmit('NAME$EventScrollTop');"><img ALT='First' 
WIDTH="32" HEIGHT="32" SRC="PUBLIC/wizFirst.gif" border=0></a> 
<a href="javascript:icSubmit('NAME$EventPageUp');"><img ALT='Prior' 
WIDTH="32" HEIGHT="32" SRC="PUBLIC/wizPgUp.gif" border=0></a> 
<a href="javascript:icSubmit('NAME$EventScrollUp');"><img ALT='Up' 
WIDTH="32" HEIGHT="32" SRC="PUBLIC/wizUp.gif" border=0></a> 
<a href="javascript:icSubmit('NAME$EventScrollDown');"><img ALT='Down' 
WIDTH="32" HEIGHT="32" SRC="PUBLIC/wizDown.gif" border=0></a> 
<a href="javascript:icSubmit('NAME$EventPageDown');"><img ALT='Next' 
WIDTH="32" HEIGHT="32" SRC="PUBLIC/wizPgDn.gif" border=0></a> 
<a href="javascript:icSubmit('NAME$EventScrollBottom');"><img ALT='Last' 
WIDTH="32" HEIGHT="32" SRC="PUBLIC/wizLast.gif" border=0></a> 
</TSSCRIPT> 

The skeletons generate the following HTML code at runtime: 
 
<!-- Table.htm -- Start --> 
<table border="0" width="100%" bgcolor='#dcdcdc'> 
 <tr> 
  <td> 
   <table border="0" width="100%"> 
   <tr bgcolor='#ccccff'> 
   <th width="2"> 
     &nbsp; 
   </th> 
   <th> 



Internet Application Guide 114

     State Code 
   </th> 
   <th> 
     State Name 
   </th> 
  </tr> 
 <tr bgcolor='#ffffff'> 
  <td width="2"> 
  <input type="radio" value='1' name='BROWSE_1$Choice' id='BROWSE_1$1' 
checked=1> 
  </td> 
  <td> 
    <LABEL FOR='BROWSE_1$1'> 
    AK 
   </LABEL> 
  </td> 
  <td> 
   <LABEL FOR='BROWSE_1$1'> 
    Alaska 
   </LABEL> 
 <!-- other rows and end tags edited for readability --> 
<td bgcolor='#ccccff'> 
<a href="javascript:icSubmit('BROWSE_1$EventScrollTop');"><img 
ALT='First' WIDTH="32" HEIGHT="32" SRC='/wizFirst.gif' border=0></a> 
<a href="javascript:icSubmit('BROWSE_1$EventPageUp');"><img ALT='Prior' 
WIDTH="32" HEIGHT="32" SRC='/wizPgUp.gif' border=0></a> 
<a href="javascript:icSubmit('BROWSE_1$EventScrollUp');"><img ALT='Up' 
WIDTH="32" HEIGHT="32" SRC='/wizUp.gif' border=0></a> 
<a href="javascript:icSubmit('BROWSE_1$EventScrollDown');"><img 
ALT='Down' WIDTH="32" HEIGHT="32" SRC='/wizDown.gif' border=0></a> 
<a href="javascript:icSubmit('BROWSE_1$EventPageDown');"><img ALT='Next' 
WIDTH="32" HEIGHT="32" SRC='/wizPgDn.gif' border=0></a> 
<a href="javascript:icSubmit('BROWSE_1$EventScrollBottom');"><img 
ALT='Last' WIDTH="32" HEIGHT="32" SRC='/wizLast.gif' border=0></a> 
<!-- Table.htm -- End --> 



Skeleton Guide  115

You will have a list box similar to this at runtime: 

 

Text.htm 

This is the skeleton that generates the HTML version of a TEXT control. 

The skeleton can get the attributes of the text control, and give you an HTML versions of 
the control. 
 
<!-- Text.htm -- Start --> 
<textarea rows='9' cols='25' wrap=off name='ORD_ORDERNOTE'></textarea> 
<!-- Text.htm -- End --> 

The above is generated by the following skeleton code: 
 
<!-- Text.htm -- Start --> 
<TSSCRIPT value="EmbedBeforeControl" type=html></TSSCRIPT> 
<TSSCRIPT tag=textarea attr=name value="Name"> 
<TSSCRIPT tag=textarea attr=disabled value=1 when="Disabled"> 
<TSSCRIPT tag=textarea attr=readonly value=1 when="Readonly"> 
<TSSCRIPT tag=textarea attr=rows value="(Height+4)/8"> 
<TSSCRIPT tag=textarea attr=cols value="(Width+2)/4"> 
<TSSCRIPT tag=textarea attr=onChange text="icSubmitForm()" 
when="SubmitOnChange"> 
<TSSCRIPT tag=textarea attr=wrap text="soft" when="!HScroll"> 



Internet Application Guide 116

<textarea rows="1" cols="20" wrap=off> 
<TSSCRIPT value=DisplayText>String Text</TSSCRIPT></textarea> 
<TSSCRIPT value="EmbedAfterControl" type=html></TSSCRIPT> 
<!-- Text.htm -- End --> 

The text control could look similar to this: 

 

Toolbar.htm 

All this skeleton code does in define an area in which button controls are placed.  See 
Button skeleton. 

 

Summary 

If you understand the pieces of the skeletons, then you can see how they fit together.  
You can even author your own skeletons and simply write TSSCRIPT commands to 
include them. 



Skeleton Guide  117

 

 



Internet Application Guide 118

6 - Common Questions and Answers 
 
Introduction 

This section covers several common questions that we found to be helpful with getting 
your application running quickly. The focus of these questions are the Skeletons, 
although it is not restricted to them. For more information on Skeletons, see the Skeleton 
chapter in this manual. The purpose of this section is to offer as many real world issues 
as possible. 

When an application is run in a browser, you can see the HTML code generated by the 
skeletons (RIGHT-CLICK on a blank area of a page and choose View Source).  This is 
the best way to understand how the skeletons interact with your program to produce the 
final result. 

 

Common Questions 
How do I set background colors for pages in my application? 

This is controlled from the Window.htm skeleton. In this file, you will see a TSSCRIPT 
line that is a comment about colors. The next set of lines defines TSSCRIPT tags and 
their attributes.  One of the attributes is a default color.  Lets examine one of these lines: 

<TSSCRIPT tag="<* FinalColor=CellB>" attr=bgcolor 
value="'#ffffff'" comment="Cell background color" phase=*> 

What this line is doing is stating that a new FinalColor tag, named CellB, has a default 
background color attribute with value #ffffff.  The phase=* means that is can be 
overridden by any phase value later, for example; runtime. If you examine a few lines 
further down you see this line: 

<TSSCRIPT tag="<* FinalColor=*>" attr=FinalColor remove 
phase=Runtime comment="Remove pseudo tags from the table 
entries"> 

This line is simply stating that whatever tag is being used now, use whatever color is 
setup at runtime. This tells you that the line you need to change is the first one.  You can 
replace the #ffffff with another color, for example, ‘Green’.  



Common Questions and Answers  119

The following is a list of color attributes and what controls they affect. 

 

How can I set a default font? 

You can do this with the <FONT> tag.  Since there are skeletons for each type of control 
(CHECK, STRING, TAB, etc), setting the font for each of these files is labor intensive.  It 
also is considered a “no-no” for HTML 4.x specifications. See http://www.w3.org/MarkUp/ 
for comments about this. If you know you will need to support older browsers, then use 
the <FONT> tag. The previous link has specifics about this. 

How can I implement Cascading Style Sheets? 

A better way of using fonts is Cascading Style Sheets (CSS). For a good reference on 
CSS standards, see http://www.w3.org/Style/CSS/ for a list of many resources on this 
subject. 

In short, a CSS sets a style for fonts and appearance and is used on tags, for example 
<p> which begins a new paragraph. You could think of these as the event embeds for 
HTML.  When a new paragraph happens, insert the new CSS and activate it. 

 

Not all browsers support this relatively new feature.  The above link has a list of browsers 
(and minimum version) that do. 



Internet Application Guide 120

<head> 
<meta http-equiv="Content-Type" content="text/html; charset=iso-8859-1"> 
<title>This displays text in the title bar</title> 
<link rel="stylesheet" type="text/css" href="../mysheets/kewlstyle.css"> 

</head> 

Skeletons support this feature too. You could modify one to use them. Here is an 
example: 
 
<!-- Window.htm -- Start --> 
<html> 
<head> 

<title> 
The Best of FAQs</title> 
<style type="text/css"> 
</style> 
<style type="text/css"> 
</style> 

You could also change the window skeleton as follows: 
 
<TSSCRIPT value=”EmbedBeforeHeadClose” type=html></TSSCRIPT> 
<style type=”text/css”><!—td{font-family: verdana,arial,sans serif;font-
size: x-small;}—></style> 
<style type=”text/css”><!—pre{font-family: courier new,courier;font-size: 
x-small;}—></style> 
</head> 

How can I have an image with text on a button? 

Here is a way to make an image a link if your Skeleton (Image.htm) has the line: 

<a><img></a> 

to display the image. 

Bracket this with TSSCRIPT as shown below. 
 
<TSSCRIPT tag=a attr=href value="ImageLink" when="ImageLink!=''"> 
<a><img></a> 
</TSSCRIPT> 

Add the image in the IDE.  On the Position tab set the width and height of the button. In 
Internet Options - Controls - Properties - Properties - Insert. 

Name: ImageLink 

Type: String 



Common Questions and Answers  121

Value: 'http://127.0.0.1/default.htm' 

Do not check the Refresh when changed on the Events Tab. 

Save all dialogs and compile and run. 

The HTML that is sent to the client looks like: 
 
<!-- Image.htm -- Start --> 
<a href='http://127.0.0.1/default.htm'><img src='/public/MyImage.jpg' 
width=88 height=21></a> 
<!-- Image.htm -- End --> 

As an alternative, you can make HTML buttons with images. This is done with buttons.  
For example: 

<BUTTON name=”submit” value=”submit” type=”submit”> Send<IMG 
src=”/image.gif” alt=”text on the button”></BUTTON> 

In this example, the button is used to send data on a <FORM>. 

How can I get better control over size & placement of controls?  

Place related groups of controls inside Group structures on windows.  Tables that are 
generated are generated around these structures instead of around the individual 
controls. 

How can I use meta-tags? 

To use meta-tags in a Clarion application, go to the embeds for a procedure. Find the 
embed point, Internet, inside the <META> tag area. Insert your Dynamic or Static HTML 
here. 



Internet Application Guide 122

 

How can I make a pop-up window for data validation? 

A commonly user web page technique is to open a new window when a link is selected. 
 
<a 
HREF=”JavaScript:void(0)”onClick=”window.open(‘http://www.softvelocity.com/cws/
c5launch.dll/example/example.exe.0’, 
’’,’toolbar=no,directories=no,captionbar=no,status=yes,menubar=no,scrollbars=ye
s, 
location=no,width=550,height=400,resizable=yes’);”  
onmouseover=”self.status=’Just the FAQs’; return true “>Go therenow</a> 

The embedded HTML code should be added in the Internet, before closing </HEAD> tag 
embed point. 

 



Common Questions and Answers  123

 

 

What is the difference between POST and GET and how do I change 
between the two? 

GET and POST are two ways that information is passed to the server from an 
application. By default, a Clarion application uses the GET method. 

The GET communicates with the server by appending the form data to the URL specified 
by the action attribute (with a question-mark (“?”) as separator) and this new URL is sent 
to the processing agent.  

The POST method, communicates with the server by including the data in the body of the 
form. It is then sent to the processing agent. 

The GET method should be used when the form does not make changes to a database 
or side-effects. Many database searches have no visible side-effects and make ideal 
applications for the GET method. 

If the service associated with the processing of a form causes side effects (for example, if 
the form modifies a database or subscription to a service), the POST method should be 
used. 

 



Internet Application Guide 124

The GET method restricts form data set values to ASCII characters. Only the POST 
method (with enctype=”multipart/form-data”) is specified to cover the entire [ISO10646] 
character set. 



Common Questions and Answers  125

To set this, you should be on the extensions for the procedure you wish to change.  

 

On the Properties tab enter: 

 

The Window.htm skeleton has these lines in it (partially shown): 
 

<TSSCRIPT tag=form attr=method value="FormMethod"> 
<TSSCRIPT tag=form attr=enctype value="FormEncoding"> 
  <form name="ClarionForm" method="GET" 

The above defines a tag called form with a value of Form Method.  The form name is the 
name of this tag and its method. The template dialog simply changes the default value of 
GET to POST. 

If you wish to change this globally, then edit window.htm. 



Internet Application Guide 126

How can I get server variables and their values? 

You can obtain whatever information about properties that you wish from a skeleton. 

What you need to do is to specify a Skeleton Property and then derive the GetProperty 
method and return the global variable instead. 

For example : Glo:Amount 

In the skeleton: 

<TSSCRIPT value="Amount"></TSSCRIPT> 

In the procedure: 
 
GetProperty 
  IF name="Amount" 
      RETURN CreateStringValue(Glo:Amount) 

There is also a code template available to accomplish this task. 

How can I create tooltips? 

To have your buttons or images display a tooltip, place the text in the Tip prompt on the 
control properties Help tab. The TIP will become an ALT= HTML attribute of the control. 

How can I launch a Clarion application from a link? 

You need to provide a link on the web page where the Clarion application is to be called 
from.  This can be an image, hyperlink, button, etc, depending on the effect you wish. 
Here is an example: 

<a href="http://somesite.com/cws/c5launch.dll/demos/demo.exe.0" 
Click here for a demo.</font></a>  



Common Questions and Answers  127

How can I add email capability to my applications? 

All you need is an entry control for the email address. However, this does not give you 
email capability. For the entry control, that contains the address, tell the skeletons about 
the extended capability for the entry control.  This is done via the Web procedure 
extension.  Just add email in the Extra Capabilities entry.  

This skeleton formats data from a variable containing an email address so it is a “Mailto:” 
hyperlink. To use this skeleton, you would specify the email capability property in the 
Capabilities prompt in the Internet Connect template in the IDE (individual overrides for 
a control). 
 
<HTML> 
<head> 
<meta name=”ts-control” content=”sstring”> 
<meta name=”ts-capabilities” content=”email”> 
</head> 
<BODY> 
<!— email.string.htm — Start —> 
<TSSCRIPT value=”EmbedBeforeControl” type=html> 
</TSSCRIPT> 
<TSSCRIPT tag=a attr=href replace=NAME value=Contents> 
<A HREF=”mailto:NAME”> 
<TSSCRIPT value=Contents> 
</TSSCRIPT> 
</A> 
</TSSCRIPT> 

<TSSCRIPT value=”EmbedAfterControl” type=html> 
</TSSCRIPT> 
<!— email.string.htm — End —> 
</BODY> 
</HTML> 



Internet Application Guide 128

 



INTERNET CONNECT  129

Part II 
—— 

Internet Connect 



Internet Application Guide 130

 



TUTORIAL – Making a Web Application 131

7 - Tutorial—Making a Web Application 
In Clarion, you can create an application from a data dictionary—with no coding required. 
All you need to do is create the Data Dictionary then use the Application Wizard to make 
a complete Windows application—in minutes! With Internet Connect, the Application 
Wizard has an additional checkbox that lets you Web-enable the application you are 
creating. This allows you to create a Web application with only one additional click of your 
mouse! 

In this chapter, you will: 

 Use the Application Wizard to create a hybrid Web/Windows application from a 
Clarion Data Dictionary, then run the program using your browser. 

 Compile and deploy the application, then run it in a browser. 

 Optimize that application for the Web using the template interface, recompile, 
deploy it, and run it again. 

 Modify the appearance of the application for the Web, recompile, deploy it, and 
run it again. 

This should all take about thirty minutes—without any “coding” on your part. By the 
end of this chapter, you’ll have a complete application for a simple order entry system. 

Let’s get started! 



Internet Application Guide 132

Web Application Wizard 
Creating a Hybrid Web/Windows Application 

Starting Point:  
You should have the Clarion development environment open. 

This tutorial assumes that you installed Clarion in C:\Clarion6 and the Application broker 
in C:\CWICWEB. If you used different directories, you will have to modify the instructions 
accordingly. This tutorial also assumes that you have completed the tutorials in the 
Clarion Getting Started and Learning Clarion topics and have a basic familiarity with the 
Clarion development environment. 

Create your first Clarion Web application 

1. On the Pick dialog, select the Application tab, then press the New... button. 

This opens the New dialog.  

2. Navigate to the \Clarion6\Examples\WebTutor folder from the Directories list. 

3. Type WebOrder in the File Name field, then press the Save button. 

 This opens the Application Properties dialog. 

4. Press the elipsis (...) button to the right of the Dictionary File entry box. 

This opens the Select Dictionary dialog. 

5. Highlight the WebOrder.dct (in the C:\Clarion6\Examples\WebTutor\ directory) 
file then press the Open button. 

 
Run the Application Wizard 

1. Check the Application Wizard box, then press the OK button. If the Select 
Application Wizard window appears, highlight Application Wizard – Create a New 
Database Application, and then press the Select button.  

2. After the Application Wizard opens, press the Next button past the next five 
wizard screens, accepting the defaults. Make sure that the Generate 
Procedures for all files in my dictionary check box is checked, and that the 
Control Model is set to Toolbar. 



TUTORIAL – Making a Web Application 133

 

3. Do Not Check the Create an Internet Enabled Application box, then press the 
Next button. This step adds the Web Builder extension template to the 
application. In this tutorial, we will be using the Internet Deployment template set. 

 

4. Uncheck the Generate Reports for each file box, then press the Finish button. 



Internet Application Guide 134

The Application Wizard creates the application.  

 

Add the Internet Deployment Templates 

1. Press the Global Icon Button to access the Global Properties window. 

2. In the Global Properties window, press the Extensions button. 



TUTORIAL – Making a Web Application 135

3. Press the Insert button to add the Internet Deployment Application Extension as 
shown below: 

 

 

4. Press the OK button to close the Extension and Control Template window. Press 
the OK button on the Global Properties window to return to the Application Tree. 

Make the Application 

1. Choose Project  Make  (or press the Make icon button on the toolbar). 

Congratulations!  Your first Web application is ready to deploy and run. 

2. Press the OK button on the compile results window. 



Internet Application Guide 136

Deploying the Application 

The last step created WebOrder.exe. Since it is a Web-enabled application, it can now 
run under Windows as a standard Windows executable or over the Web through the 
Application Broker using a browser. Next we will deploy the application and the files it 
needs to execute. Note that we are deploying this to a different directory on the same 
machine, but the process would be the same to deploy the program to a server machine. 

1. Open Windows Explorer (or Windows NT Explorer). 

2. Copy WebOrder.exe from the C:\Clarion6\Examples\Webtutor directory to the 
C:\CWICWEB\EXEC\WebTutor directory (You may have to create this directory).  

 
We have provided sample data files in both directories. If you had local data files, 
you would also need to deploy them. 

3. Copy the files listed below from the C:\Clarion6\BIN directory to the 
C:\CWICWEB\EXEC\WebTutor directory. 

  C60RUNx.DLL 

  C60TPSx.DLL 

 C60ASCx.DLL 

  C60DOSx.DLL 

These are the support DLLs your application uses, including the runtime library 
and database drivers.  

This step is included here even though it may not be necessary on your WIN 
95/98 development machine because these files are in your PATH. However, NT 
server and XP behaves differently. Each user has a PATH and deploying the 
DLLs with the .EXE ensures that the user accessing the application through a 
browser has the support files available. This is explained in detail in Deploying 
Applications. 

4. Start the Application Broker by double-clicking on C60APS10.exe (or 
C60APS.exe if you have the full version of the Application Broker) in the 
C:\CWICWEB\ directory. 

5. Start your favorite browser.  

Next, test the Application Broker and your TCP/IP setup using the Localhost 
loopback method: 



TUTORIAL – Making a Web Application 137

6. On the Browser’s URL line, type: 

  http://localhost/btest.htm 

 or  

  http://127.0.0.1/btest.htm 

 then press ENTER.   

 

If you have the broker set to a port other that port 80, you must add that to the domain 
portion of the URL.  For example: 

 http://localhost:8080/btest.htm 
or  

   http://127.0.0.1:8080/btest.htm 

 

If the test Web page displays correctly, you have the application broker installed and 
running correctly. If not, you should return to the previous chapter and reconfigure your 
setup. 



Internet Application Guide 138

Next, start the application in the browser: 

7. On the Browser’s URL line, type: 

  http://localhost/exec/webtutor/weborder.exe.0 

 or 

  http://127.0.0.1/exec/webtutor/weborder.exe.0,  

 then press ENTER.  

 

If you have the broker set to a port other that port 80, you must add that to the domain 
portion of the URL.  For example: 

 http://localhost:8080/exec/WebTutor/WebOrder.exe.0  

Congratulations! Your first Web application is running.  

 



TUTORIAL – Making a Web Application 139

Now you can explore this new application and compare it to the manner in which it runs 
under Windows. You will notice that there are some minor differences between the two, 
because of the platform, but it will look and feel very much the same.  

8. When you are finished, click on the Exit hyperlink. 

This closes the application. Notice the browser now displays a blue Web page with a 
hyperlink to restart the application. This page is created by the application broker 
automatically unless you specify a page to return to on exit in the Global Internet 
Application Extension template. 

Leave your browser open with the restart page displayed. You will use this page to restart 
your application. 

The rest of this chapter walks you through techniques for optimizing your application for 
the Web platform.  This will not only demonstrate some features in the IBC templates, but 
will also show you how much power you have when you finally do write your own code to 
provide some “non-standard” functionality. 

Continue on! You’ve only just skimmed the surface of Clarion Internet Connect, and 
there’s a lot more! 



Internet Application Guide 140

Faster is Better—Optimizing your Application 

The Web introduces one additional programming challenge—bandwidth conservation. It 
is important to utilize all the methods available to reduce the amount of data transmitted 
over the network. Many users connect to the Web using a modem and telephone lines, 
which is a relatively slow network connection. 

Internet Connect is Designed to Conserve Bandwidth 

Clarion Internet Connect was designed to conserve bandwidth. The Java controls it 
creates most often update dynamically on the client browser without the need to refresh 
the entire page. This form of “dynamic HTML” requires only a small amount of data to be 
transmitted. This is known as a Partial Refresh. When a page is partially refreshed, only 
the controls which are enabled to accept updated data redisplay. Entry Controls, Java 
String controls, Java Image controls, and Java Listboxes are usually enabled to update 
dynamically. 

For the same reason (bandwidth conservation) many controls trigger a Partial Refresh. 
For example, selecting a new record in a listbox triggers a Partial Refresh, allowing most 
controls to redisplay current data. 

Partial Refresh versus Full Refresh 

There are some instances, however, where a Partial Refresh is appropriate but is not the 
default. Changing events to trigger a Partial Refresh instead of a Full Refresh, where 
appropriate, is one of the best ways to optimize your Web applications. 

There are many cases when a Partial Refresh is appropriate but a Full Refresh is the 
default. This is because the templates cannot anticipate every possibility and must favor 
the safer Full Refresh instead of the faster Partial Refresh.  

For example, a multi-sorted list which has no additional controls populated on the Tabs 
performs better if you use Individual Control Overrides to specify a Partial Refresh when 
a new tab is selected. This will only change the data in the listbox instead of replacing the 
entire page. 

Let’s look at the application we just created. 

1. Task-switch back to your browser.  

2. CLICK on the restart hyperlink. 

 The WebOrder application appears inside the browser. 

3. CLICK on the Browse Customer Information File hyperlink. 



TUTORIAL – Making a Web Application 141

The Browse the Customer File “window” appears in the browser. Notice that the 
window contains a listbox and two tabs. Clicking on a tab changes the sort order 
of the list. 

4. CLICK on each of the tabs and notice the behavior of the Web page. 

You should have noticed that the entire page was replaced to redisplay the list. 
This is the default behavior of sheets and tabs. In the next section we will 
override this default behavior. 

5. CLICK on the blue X button at the right end of the toolbar to close the Browse 
window, then click on the Exit hyperlink to exit the application. 

Leave your browser open with the restart page displayed. You will use this to 
restart your application after making some changes. 

Internet Procedure Extension Template 

In this section, we will override the SHEET control’s default action to optimize it for 
performance over the Web. 

Starting Point:  
You should have the weborder.app open in the Clarion development environment . 

1. In the Application Tree, select the Category tab. 

This sorts the procedures by category. Notice there are seven procedures within 
the Browse category.  

2. Highlight the BrowseCustomer procedure, then press the Properties button.  

 This opens the Procedure properties window. 

3. Press the Internet Options button. 

4. Select the Controls Tab. 

5. Highlight the Sheet control (?CurrentTab) in the Individual Control Options list. 

6. Press the Properties button, then select the Events tab. 

7. Highlight the Accepted event, then press the Properties button. 
Override the Default Full Refresh with Partial Refresh 

1. Check the Override default action box, then select Partial page refresh from the 
drop-down list. 

 



Internet Application Guide 142

 

2. Press the OK buttons on all the windows until you return to the application tree (4 
times). 

3. Repeat these steps for all other Browse procedures. 

4. Choose Project  Make (or press the Make icon button on the toolbar). 

Your Web application is ready to deploy once again. 

5. Open Windows Explorer (or Windows NT Explorer). 

6. Copy Weborder.exe from the C:\Clarion6\Examples\WebTutor directory to the 
C:\CWICWEB\EXEC\WebTutor directory.  

 This time you need only deploy the application, the DLLs have not changed. 

Let’s run the application to see how the changes we made affect its behavior. 



TUTORIAL – Making a Web Application 143

See the difference 

1. Task-switch back to your browser.  

2. Start the application in the browser by clicking on the Restart hyperlink. 

3. CLICK on the Browse Customer Information File hyperlink. 

4. CLICK on each of the tabs and notice the behavior of the Web page. 

You should notice that the list now re-displays data without sending an entire 
page. 

5. Exit the application. 

Leave your browser open with the restart page displayed. You will use this to 
restart your application after making some changes. 



Internet Application Guide 144

Looks are Important—Adding Graphics 

The Web has produced a colorful, enjoyable medium for computer users. Many Web 
sites are designed to provide both content and an attractive interface. Clarion Internet 
Connect has support for the most commonly used methods of employing graphics and 
colors in Web pages. 

In this section we will add a background image to the pages in which the application’s 
windows appear. This provides a back-drop for the running program and helps to visually 
indicate the portion that is the application and the portion that is not.   

This section of the tutorial is not intended to teach you page design or artistic methods. 
Ths section is designed to show you how to use the template interface to create the look-
and-feel you want. 

Internet Application Extension Template 

First, we will add a background image: 

Starting Point:  
You should have the weborder.app open in the Clarion development environment. 

1. In the Application Tree, press the Global button. This opens the Global 
Properties window. 

2. Press the Extensions button.This opens the Extensions and Control Templates 
window. 

3. Highlight Internet Application Extension. 

4. In the Page area, press the ellipsis (...) button next to Background Image. This 
opens the standard Windows file dialog. 

5. Select Crumpled.gif, then press the OK button.. 

This adds a tiled image to the Web page background. The image is of a 
crumpled piece of grey paper. Keep in mind that this image file will need to be 
deployed. 

6. In the Window area, press the ellipsis (...) button next to Background Color. 
This opens the standard Windows color dialog. 

7. Select the Silver color, then press the OK button. 

This adds a background color attribute to the HTML representation of the 
application’s window. In addition to adding the color, this also prevents the 
background image from showing through. 



TUTORIAL – Making a Web Application 145

 

8. Press the OK button on the Extensions and Control Templates and the Global 
Properties window. 

Make, Deploy, and Run the Application 

1. Choose Project  Make (or press the Make icon button on the toolbar). 

Your Web application is ready to deploy once again. 

2. Open Windows Explorer (or Windows NT Explorer). 

3. Copy Weborder.exe from the C:\Clarion6\Examples\WebTutor directory to the 
C:\CWICWEB\EXEC\WebTutor directory.  

4. Copy Crumpled.gif from the C:\Clarion6\Examples\WebTutor directory to the 
C:\CWICWEB\Public directory.  

5. Task-switch to your browser and restart the application. Notice the new look. 

In this chapter we learned how to make a new application and make some basic changes 
to optimize it for performance and appearance when running over the Web.  In the next 
chapter, we will Web-enable an existing application, so you can learn to publish any of  
your applications on the Web. 



Internet Application Guide 146

 



TUTORIAL – Web-Enabling an Existing Application 147

8 - Tutorial— Web-Enabling an Existing 
Application 
Porting an existing Clarion application to the Web is just as easy as creating a new Web 
application. 

In this chapter we will use WebTree.APP.  

In this chapter, you will: 

 Use the IBC templates to port an existing Clarion application to the Web. 

 Compile and deploy the application, then run it in a browser. 

 Learn about using Tree controls on the Web and deploying icons. 

 Optimize the Tree display using techniques similar to those used in the first 
tutorial. 

This should all take about fifteen minutes. By the end of this chapter, you’ll have a 
complete application for a simple order entry system using a different interface than the 
application used in the first tutorial. 

Let’s get started! 



Internet Application Guide 148

Using the Global Internet Application Extension 
Template 
Porting an Application to the Web 

Starting Point: 
You should have the Clarion development environment open. 

This tutorial assumes that you installed Clarion in C:\Clarion6 and the Application broker 
in C:\CWICWEB. If you used a different directory, you will have to modify the instructions 
accordingly.  

Web-enabling a Clarion application 

1. From the Pick dialog, press the Open... button. This opens the Open dialog.  

2. Select the Application tab. 

3. Select the C:\Clarion6\Examples\WebTutor directory from the Directories list, 
select WebTree.app, then press the Open button. This opens the Application 
Tree dialog. 

4. In the Application Tree, press the Global icon button. This opens the Global 
Properties window. 

5. Press the Extensions button. This opens the Extensions and Control Templates 
window. 

6. Press the Insert button. 

7. Highlight Internet Application Extension, then press the Select button. 

This adds the Internet Application Extension template which automatically adds 
the Internet Procedure Extension template to each procedure in the application. 

8. Press the OK button on the Extensions and Control Templates and the Global 
Properties windows. 

That’s all it takes to Web-enable an existing application! 

Make and Deploy 

1. Choose Project  Make (or press the Make icon button on the toolbar). 

Your Web application is ready to deploy. 

2. Press the OK button on the compile results window. 



TUTORIAL – Web-Enabling an Existing Application 149

3. Open Windows Explorer (or Windows NT Explorer). 

4. Copy WebTree.exe from the C:\Clarion6\Examples\WebTutor directory to the 
C:\CWICWEB\EXEC\WebTutor directory.  

5. Copy all the icon files (*.ICO) from the C:\Clarion6\Examples\WebTutor directory 
to the C:\CWICWEB\Public directory.  

These icons are used on the Toolbar buttons and in the Tree control. They must 
be deployed to the \PUBLIC directory in order for the browser to display them. 
The icons in the Standard toolbar which the earlier tutorial application used are 
compiled into the Java classes and need not be deployed. 

Run the application 

1. Start the Application Broker by double-clicking on C60APS10.exe (or 
C60APS.exe if you have the full version of the Application Broker) in the 
C:\CWICWEB\ directory. 

 

As in the first tutorial, we will use the executable version of the Application Broker. The 
ISAPI version works in a similar manner, with a only few differences. These are 
discussed in the Application Broker chapter. 

2. Start your browser. 

3. Next, start the WebTree.exe application in the browser.  
(http://localhost/exec/webtutor/webtree.exe.0) 

Examine the application 

You should notice that this application looks a little different than the previous application. 
It uses a toolbar but no menu. This is a common interface in Web applications, so this 
technique bears demonstration here. 

1. CLICK on the Orders button. 

The Browse Customer Orders “window” appears in the browser. Notice that the 
window contains a Tree control and two buttons to Expand All and Contract All.  

2. CLICK on the Expand All and Contract All buttons and notice the behavior. 

Notice that expanding and contracting the tree refreshes the entire page. We will 
use the same partial refresh technique you learned in the first tutorial to optimize 
this behavior. 

3. Exit the application (by pressing the blue X). 



Internet Application Guide 150

Leave your browser open with the restart page displayed. You will use this to restart your 
application after making some changes. 

Overriding the default action 

In this section, we will override the BUTTON control’s default action to optimize it for 
performance over the Web. 

Starting Point:  
You should have the WebTree.APP open in the Clarion development environment. 

1. Highlight the BrowseCustomer procedure, then press the Properties icon button.  

 This opens the Procedure properties window. 

2. Press the Internet Options button. 

3. Select the Controls Tab. 

4. Highlight the Button control (?Expand) in the Individual Control Options list. 

5. Press the Properties button, then select the Events tab. 

6. Highlight the Accepted event, then press the Properties button. 

7. Check the Override default action box, then select Partial page refresh from the 
drop-down list. 

8. Press the OK buttons on the Events and Individual Overrides windows. 

9. Highlight the Button control (?Contract) in the Individual Control Options list. 

10. Press the Properties button, then select the Events tab. 

11. Highlight the Accepted event, then press the Properties button. 

12. Check the Override default action box, then select Partial page refresh from the 
drop-down list. 

13. Press the OK buttons on all the windows until you return to the application tree (4 
times). 

Make and Deploy 

1. Choose Project  Make (or press the Make icon button on the toolbar). 

Your Web application is ready to deploy once again. 

2. Press the OK button on the compiler window. 



TUTORIAL – Web-Enabling an Existing Application 151

3. Open Windows Explorer (or Windows NT Explorer). 

4. Copy Webtree.exe from the C:\Clarion6\Examples\WebTutor directory to the 
C:\CWICWEB\EXEC\WebTutor directory.  

 This time you need only deploy the application, the icons have not changed. 

Let’s run the application to see how the changes we made affect its behavior. 

See the difference 

1. Task-switch back to your browser.  

2. Start the application in the browser by clicking on the Restart hyperlink. 

3. CLICK on the Orders button again. 

4. CLICK on the Expand All and Contract All buttons and notice the behavior now. 

You should notice that the tree now re-displays the Tree data without sending an 
entire page. 



Internet Application Guide 152

 

5. Exit the application. 

Congratulations! You are well on your way to developing Web applications. In the next 
chapter, we will discuss some advanced options you have at your disposal with Internet 
Connect.  

 



TUTORIAL – Advanced Web Programming Techniques 153

9 - Tutorial— Advanced Web Programming 
Techniques 
Now that you have learned how to create a Web application and how to port an existing 
Clarion application to the Web, you have all the skills you need to publish database 
applications on the Internet.  

But, there is more you can do with Internet Connect. This chapter will show you some of 
the advanced techniques you can use in your Web Applications. 

For the rest of the tutorial, we will continue to use the WebTree example that you used in 
the previous chapter. 

In this chapter, you will: 

 Add a Login window and use Cookies to “remember”  a user’s login name the 
next time the app is started. 

 Use a Code Template to Embed Static HTML. 

 Use a Code Template to Embed Dynamic HTML using a variable. 

 Use an Internet Embed point to write conditional HTML Code. 

 Password protect a procedure. 

 Add a Web Splash window to inform first time users that the Java Support Library 
is downloading. 

 Use Embedded HTML to align an Image on the Web. 

 Use Individual Control Options to ensure embedded source code is executed 
over the web. 

 Use embedded source code to restrict Edit-In-Place when running over the web. 

This should all take about thirty minutes. By the end of this chapter, you’ll learn most 
of the methods available to customize of your Web applications. 

Let’s continue! 



Internet Application Guide 154

Using Cookies 
In this section, we will add a login window to allow users to identify themselves. The 
application will use cookies to store that name and “remember” the login name. The next 
time the user starts the application, the prompt will not appear. 

Starting Point: 
You should have the WebTree.app open in the Clarion development environment. 

This tutorial assumes that you installed Clarion in C:\Clarion6 and the Application broker 
in C:\CWICWEB. If you used a different directory, you will have to modify the instructions 
accordingly.  

Add a login procedure 

1. In the Application Tree, highlight the Main procedure, then press the Properties 
icon button. This opens the Procedure Properties window. 

2. Press the Embeds button. This opens the Embedded Source window. 

3. Highlight the embed point as shown below: 

  

 This point ensures that the LoginWindow is called before the window opens. 

4. Press the Insert button. This opens the Select Embed Type window. 

5. Highlight Call a Procedure, then press the Select button. 

6. In the Procedure to call field, type LoginWindow,  then press the OK button. 

7. Press the Close button on the Embedded Source window and the OK button on 
the Procedure Properties window. 

 This adds the LoginWindow procedure as a ToDo item. 



TUTORIAL – Advanced Web Programming Techniques 155

Add the login window 

1. In the Application Tree, highlight the LoginWindow procedure, then press the 
Properties button. This opens the Select Procedure Type window. 

2. On the Templates tab, highlight the Window-Generic Window Handler, then 
press the Select button. This opens the Procedure Properties window. 

3. Press the Window button. This opens the New Structure window. 

4. Highlight Simple Window, then press the OK button. This opens the Window 
Formatter. 

Design the login window 

1. Select Populate  Column. This opens the Select Column dialog. 

2. In the Tables list on the left, highlight Global Data, then in the Columns list on 
the right, select LoginName, then press the Select button.  

 This variable was created for you in the example application. 

3. CLICK on the window to populate the Prompt and Entry control. 

4. Select Populate  Control Template. This opens the Select Control Template 
window. 

5. Highlight CancelButton then press the Select button. 

6. CLICK on the window to populate the Cancel button control. 

7. Select Populate  Control Template. This opens the Select Control Template 
window. 

8. Highlight CloseButton then press the Select button. 

9. CLICK on the window to populate the Close button control. 

10. Change the text of the the Close button control to OK. 



Internet Application Guide 156

 

11. Reposition the controls on the window as you see fit. 

Add the “Cookie” code to save the LoginName 

1. DOUBLE-CLICK on the OK button control to access the Embedded Source 
points for the control. 

2. Highlight the Control Events, ?Close,  Accepted, Genertated Code embed point 
then press the Insert button. This inserts the code after any generated code for 
the control. 

3. Select the SetCookie code template then press the Select button. 

  

4. In the Cookie name field, type LoginName. 

5. In the New Value field, type LoginName (or select the LoginName global variable 
from the File schematic using the ellipsis button).  

6. Press the OK button. 

7. Press the Close button on the Embedded Source window. 



TUTORIAL – Advanced Web Programming Techniques 157

Add the “Cookie” code to get the LoginName 

1. DOUBLE-CLICK on the window to access the Embedded Source points for the 
window. 

2. Highlight the embed point as shown below then press the Insert button.  

  

3. Highlight Source then press the Select button. 

4. Type in the source code below: 
 

  CASE EVENT() 
  OF Event:NewPage                                 !New Page is requested 
    LoginName = Broker.Http.GetCookie('LoginName') !get login cookie 
    DISPLAY                                        !refresh 
  OF EVENT:CloseWindow 
    RETURN PARENT.TakeEvent()                      !process the close event 
  END 
  IF LoginName                                     !If cookie exists 
    POST(Event:CloseWindow)                        !close this page 
  END 

This code “gets” a cookie when the window is active. If it sucessfully retrieves a 
cookie and sets the LoginName variable, it closes the window (before the user 
sees it). This means a user only needs to login once, then the server 
“recognizes” the user the next time around. 

5. Exit the Source editor and save the changes. 

6. Press the Close button on the Embedded Source window. 

7. Exit the Window Formatter and save the changes. 

8. Press the OK button on the Procedure Properties window. 



Internet Application Guide 158

Make and Deploy 

1. Choose Project  Make (or press the Make icon button on the toolbar). Your 
Web application is ready to deploy. 

2. Press the OK button on the compiler window. 

3. Open Windows Explorer (or Windows NT Explorer). 

4. Copy WebTree.exe from the C:\Clarion6\Examples\WebTutor directory to the 
C:\CWICWEB\EXEC\WebTutor directory.  

Run the application 

1. Start the Application Broker by DOUBLE-CLICKing on C60APS10.exe (or 
C60APS.exe if you have the full version of the Application Broker) in the 
C:\CWICWEB\ directory. 

2. Start your browser.  

3. Start the WebTree application in the browser 
(http://localhost/exec/webtutor/webtree.exe.0). 

Examine the application 

The first time you run the application. You are prompted to provide a login name. The 
next time you run it, you are not prompted, because the system reads your cookie and 
the value of the global variable is set to the value in the cookie. 

1. Type in a name when the Login screen appears then press OK . 
2. .............................................................................................................Exit the application 

3. Restart the WebTree application in the browser. Notice that the second time, you 
are not prompted to log in. 

4. Exit the application 

Leave your browser open with the restart page displayed. You will use this to restart your 
application after making some changes. 

Let’s make another change to the application to display the user’s LoginName using the 
Dynamic HTML code template. 



TUTORIAL – Advanced Web Programming Techniques 159

Embedding HTML 
One of the most powerful features of the Internet Developer's Kit is the ability to embed 
HTML code in the HTML pages which are output by the Web-enabled application. 

When you embed HTML code (using the special embed points added by the Global 
Internet Application Extension template), it is inserted at the specified location in the 
HTML returned to the browser which executed the application.  

Starting Point: 
You should have the Clarion development environment open and open the 
WebTree.app application. 

Adding Dynamic HTML using a variable 

We have written the code needed to set and retrieve a user’s login name and store it in a 
global variable. Now we will display that name on the Web page below the HTML 
representation of the window. 

1. In the Application Tree, highlight the Main procedure, then press the Properties 
icon button. This opens the Procedure Properties window. 

2. Press the Embeds button. 

 This opens the Embedded Source window. 

3. Highlight the Internet-Before the Closing </BODY> tag embed point, then press 
the Insert button. This opens the Select Embed Type window. 

4. In the code template section, highlight Dynamic HTML, then press the Select  
button. 

5. In the Dynamic Text field, type the following: 

 ‘<<P>’ & CLIP(LoginName) & ‘ is logged in <</P>’ 

6. Press the OK button on the code template window. 

7. Press the Close button on the Embedded Source window and the OK button on 
the Procedure Properties window. 



Internet Application Guide 160

Make and Deploy 

1. Choose Project  Make (or press the Make icon button on the toolbar). 

Your Web application is ready to deploy. 

2. Press the OK button on the compiler window. 

3. Open Windows Explorer (or Windows NT Explorer). 

4. Copy WebTree.exe from the C:\Clarion6\Examples\WebTutor directory to the 
C:\CWICWEB\EXEC\WebTutor directory.  

Examine the application 

1. Restart the WebTree application in the browser (click on the Restart hyperlink). 

If you have already run the application on this machine, you will not be prompted 
to Log In. Instead, the server reads your “cookie” and sets the LoginName global 
variable to that value. The LoginName variable now displays on the Web page 
below the toolbar buttons. 

2. Exit the application. 

Leave your browser open with the restart page displayed. You will use this to 
restart your application after making some changes. 

Let’s make some more changes to the application using Embedded HTML. 

Adding Static HTML 

In the last section, we added HTML code that was constructed using a combination of 
text and variables. In this section we will use the Static HTML code template to add 
HTML code that will remain static. 

We will use this to add a link at the bottom of the page that will allow users to Email the 
Webmaster with comments or questions about the application. 

1. In the Application Tree, highlight the Main procedure, then press the Properties 
button. This opens the Procedure Properties window. 

2. Press the Embeds button.This opens the Embedded Source window. 

3. Highlight the Internet-Before the Closing </BODY> tag embed point and press 
the Insert button. 

 This opens the Select Embed Type window. 



TUTORIAL – Advanced Web Programming Techniques 161

4. Highlight Static HTML, then press the Select button. 

5. In the HTML to Insert box, type the following: 

 <P><A HREF="mailto:nobody@softvelocity.com">Comments?</A></P> 

6. Press the OK button on the code template window. 

7. Press the Close button on the Embedded Source window and the OK button on 
the Procedure Properties window. 

Make and Deploy 

1. Choose Project  Make (or press the Make icon button on the toolbar). 

Your Web application is ready to deploy. 

2. Press the OK button on the compiler window. 

3. Open Windows Explorer (or Windows NT Explorer). 

4. Copy WebTree.exe from the C:\Clarion6\Examples\WebTutor directory to the 
C:\CWICWEB\EXEC\WebTutor directory.  

Examine the application 

1. Restart the WebTree application in the browser (click on the Restart hyperlink). 

You will notice the new link. If you click on the link, your browser opens your 
Email client with a new preaddressed message. 

2. Exit the application. 

Leave your browser open with the restart page displayed. You will use this to 
restart your application after making some changes. 

Adding conditional HTML in Clarion Source Code 

A third method of inserting embedded HTML into your Web pages is by using the 
Target.WriteLn method in embedded source code. This allows you to use Clarion code 
to write the HTML code. One benefit of using Clarion code is the ability to control the 
HTML code you want to write. In other words, you can utilize the logical structures in the 
Clarion language to control what is written. You can write one line or another using an 
IF..THEN..ELSE clause, or a CASE structure. 

We will use this technique to display a random advertisement on the bottom of the page 
using an EXECUTE structure. 



Internet Application Guide 162

1. In the Application Tree, highlight the Main procedure, then press the Properties 
icon button. This opens the Procedure Properties window. 

2. Press the Embeds button. This opens the Embedded Source window. 

3. Highlight the Internet-Before the Closing </BODY> tag embed point then press 
the Insert button. This opens the Select Embed Type window. 

4. Highlight Source, then press the Select button. 

5. In the Embedded Source editor, type the following source code: 
 
Str1" = '<<A HREF="http://www.' 
Str2" = '.com"><<IMG SRC="' 
Str3" = '" BORDER=0><</A>' 
 
EXECUTE RANDOM(1,5)   
Target.WriteLn(CLIP(Str1") &'softvelocity'& CLIP(Str2") & SELF.Files.GetAlias('1.GIF') & Str3") 
Target.WriteLn(CLIP(Str1") & 'icetips'    & CLIP(Str2") & SELF.Files.GetAlias('2.GIF') & Str3") 
Target.WriteLn(CLIP(Str1") & 'finatics' & CLIP(Str2") & SELF.Files.GetAlias('3.GIF') & Str3") 
Target.WriteLn(CLIP(Str1") & 'flpanthers' & CLIP(Str2") & SELF.Files.GetAlias('4.GIF') & Str3") 
Target.WriteLn(CLIP(Str1") & 'flamarlins' & CLIP(Str2") & SELF.Files.GetAlias('5.GIF') & Str3") 
END 

  

You can copy and paste this text from chap4.txt in the \webtutor directory. 

6. Exit the Source editor and save the changes. 

7. Press the Close button on the Embedded Source window and the OK button on 
the Procedure Properties window. 

Make and Deploy 

1. Choose Project  Make (or press the Make icon button on the toolbar). 

Your Web application is ready to deploy. 

2. Press the OK button on the compiler window. 

3. Open Windows Explorer (or Windows NT Explorer). 

4. Copy WebTree.exe from the C:\Clarion6\Examples\WebTutor directory to the 
C:\CWICWEB\EXEC\WebTutor directory.  

5. Copy the GIF files (*.gif) from the C:\Clarion6\Examples\WebTutor directory to 
the C:\CWICWEB\Public directory.  



TUTORIAL – Advanced Web Programming Techniques 163

Examine the application 

1. Restart the WebTree application in the browser (click on the Restart hyperlink). 

You will notice the new image and link. Each time you start the application, a 
random ad appears. 

2. Exit the application. 

Leave your browser open with the restart page displayed. You will use this to 
restart your application after making some changes. 



Internet Application Guide 164

Covering the Download with a Splash Window 
In order for a browser to “run” a Web-enabled application, the Java Support Library (JSL)  
must be available to the client browser. First-time users must download either 
Clarion.CAB (for Microsoft Internet Explorer) or Clarion.ZIP  (for Netscape). In most 
browsers, the JSL is only downloaded once and remains cached (until the user clears 
that cache). Although the JSL is very compact for the degree of functionality it provides, it 
can still take several minutes to download over a 28.8 modem. With that in mind, we will 
use a “splash screen” window to alert first-time users that the download is in progress. By 
placing a Java Button on that window, we can prevent users from continuing until the JSL 
is downloaded and the Java button is initialized. 

Starting Point: 
You should have the Clarion development environment open and open the 
WebTree.app application. 

1. In the Application Tree, highlight the Main procedure, then press the Properties 
icon button. This opens the Procedure Properties window. 

2. Press the Embeds button. This opens the Embedded Source window. 

3. Highlight the embed point as shown below:  

  

4. Press the Insert button. This opens the Select Embed Type window. 

5. Highlight Source, then press the Select button. 

6. In the Embedded Source editor, type the following source code: 

 IF WebServer.Active THEN Splash. 

This makes sure that the Splash procedure is only called when the application is 
running over the Web. 



TUTORIAL – Advanced Web Programming Techniques 165

7. Make sure this embed is listed before the call to the LoginWindow procedure 
using the up or down button. 

  

 This ensures that the Splash procedure is called before any other window opens. 

8. Press the Close button on the Embedded Source window. 

9. Press the Procedures button. This opens the Called Procedures window.  

10. Highlight Splash, then press the OK button. 

This connects the Splash procedure to the Main procedure in the Application Tree. This 
is necessary if your application is using Local MAPs.  

Changing the BUTTON to a Java Button 

The Splash window contains some text, a button, and an IMAGE control. The BUTTON 
was populated as a CloseButton control template with the text changed to Continue. 
Since the button is created as an HTML button by default, you will specify otherwise. We 
want it to be a Java button so that it will not be available to the end user until the JSL has 
downloaded. 

1. In the Application Tree, highlight the Splash procedure, then press the 
Properties icon button. 

2. Press the Internet Options button. 

3. Select the Controls tab. 

4. Highlight ?Close in the Individual Control Options list, then press the 
Properties button. 

5. Select the Classes tab. 

6. Check the Override default Class box, then select the WebJavaButtonClass 
from the Class Name drop-down list. 



Internet Application Guide 166

 

7. Press the OK button. Leave the Internet Options window open. We will use it in 
the next section. 

Centering the Image on the Splash window 

The Splash window’s IMAGE control is positioned so that is is centered horizontally in the 
window. This portion of the tutorial will add some HTML code to ensure that the IMAGE 
remains centered when running over the Web.  

1. Highlight ?Image1 in the Individual Control Overrides list, then press the 
Properties button. 

2. Select the HTML tab. 

This window allows you to enter HTML code before and after a control. This 
HTML code only affects the control when running over the Web. 

3. In the HTML before control box, type: 
...........................................................................................................................<CENTER> 

4. In the HTML after control box, type: 

 </CENTER> 

5. Press the OK buttons on all the windows until you return to the Application Tree 
(3 times). 

Make and Deploy 

1. Choose Project  Make (or press the Make icon button on the toolbar). 

Your Web application is ready to deploy. 

2. Press the OK button on the compiler window. 

3. Open Windows Explorer (or Windows NT Explorer). 



TUTORIAL – Advanced Web Programming Techniques 167

4. Copy WebTree.exe from the C:\Clarion6\Examples\WebTutor directory to the 
C:\CWICWEB\EXEC\WebTutor directory.  

Examine the application 

1. Restart the WebTree application in the browser (click on the Restart hyperlink). 

 You will notice the Splash window now appears before any other window.  

2. Exit the application. 

Leave your browser open with the restart page displayed. You will use this to 
restart your application after making some changes. 

 



Internet Application Guide 168

Using Partial Refresh to Update Controls 
In Windows applications, programmers often embed code to update one control when the 
value of another control changes. For example, you might embed code to change the 
total of a line item when the quantity of items changes. The Webtree application has code 
like this in the UpdateItems procedure. The embedded code is tied to the 
EVENT:Accepted on each control. In other words, when the user changes the value in a 
control and tabs off it or selects another control with a mouse click, the code is executed. 

When an application runs over the Web, ENTRY controls are processed on the browser 
by default. In other words, there is no interaction between the browser and the server 
application—unless you change the event handling options for that control. In this 
section, you will change the action for three controls to ensure that embedded code is 
executed on the server for an Event:Accepted for these controls. 

1. In the Application Tree, highlight the UpdateItems procedure, then press the 
Properties icon button. This opens the Procedure Properties window. 

2. Press the Internet Options button. 

3. Select the Controls tab. 

4. Highlight ?ITEM:ProdCode in the Individual Control Options list, then press the 
Properties button. 

5. Select the Events tab. 

6. Highlight Accepted,  then press the Properties button. 

7. Check the Override default action box, then select the Partial page refresh from 
the Action on Event drop-down list. 

8. Press the OK buttons on all the windows until you return to the Internet Options 
window (twice). 

9. Repeat the last 5 steps for ?ITEM:Quantity and ?ITEM:Price. 

10. Press the OK buttons on all the windows until you return to the Application Tree 
(twice). 



TUTORIAL – Advanced Web Programming Techniques 169

Make and Deploy 

1. Choose Project  Make (or press the Make icon button on the toolbar). 

Your Web application is ready to deploy. 

2. Press the OK button on the compile results window. 

3. Open Windows Explorer (or Windows NT Explorer). 

4. Copy WebTree.exe from the C:\Clarion6\Examples\WebTutor directory to the 
C:\CWICWEB\EXEC\WebTutor directory.  

Examine the application 

1. Restart the WebTree application in the browser (click on the Restart hyperlink). 

2. Press the Orders button. 

3. Press the Expand All button. 

4. Highlight one of the line itens (the green lines). 

5. Press the Change button 

6. Change the amount in the Quantity Field, then press TAB. 

Notice the Extended Total changes. If you change the Price field or Product 
Code, the Extended Total also changes. 

7. Exit the application. 

Leave your browser open with the restart page displayed. You will use this to restart your 
application after making some changes. 



Internet Application Guide 170

Restricting Access to a Procedure 
For the next part of the tutorial we will restrict access to a procedure using the browser’s 
built-in authentication support and the Internet Procedure Extension template’s password 
protection capabilities. When a password protected procedure is called, the browser's 
authentication window displays. You do not need to create a window to collect login 
information. Password protection is based on an area, a username and a password. The 
“area” is the protected procedure. 

The browser prompts the user for a user name, and a password.  These are then sent to 
the program for validation. If the program accepts the password (i.e., it RETURNs TRUE 
from the WebWindow.ValidatePassword method), the new page is displayed, otherwise 
the browser prompts again.  After three attempts the browser displays a message 
informing the user that access is denied. This page automatically returns the user to the 
last active place in the program after a few seconds. 

  

If the page has already been visited in the current session the browser will normally 
supply the user name and the password without prompting the user. This feature is built-
in to most browsers. 

There are a few methods of password protection (see Using Passwords in the Web 
Application Design Considerations chapter). We will use the more advanced method—to 
override the WebWindow.ValidatePassword method. 

Starting Point:  
You should have the Clarion development environment open and open the 
WebTree.app application. 

Password Protection 

To implement password protection that is validated against a data file, you must add the 
validation file to the file schematic, add the password challenge in the Procedure 
Extension template, and override the WebWindow.ValidatePassword method with your 
validation code. 

Add the Validation File 

1. In the Application Tree, highlight the UpdateProduct procedure, then press the 
Properties icon button. This opens the Procedure Properties window. 

2. Press the Tables button. This opens the Table Schematic Definition window. 

3. Highlight the Other Files, then press the Insert button. This opens the Select File 
window. 



TUTORIAL – Advanced Web Programming Techniques 171

4. Highlight Userlist, then press the Select button. 

5. Press the OK button on the Table Schematic Definition window. 

Add the Password Challenge 

1. Press the Internet Options button. 

2. Select the Advanced Tab. 

3. Check the Restrict access to this procedure box. 

 

4. Press the OK button. 

5. Press the Embeds button. This opens the Embedded Source window. 

6. Highlight the Internet- Password Validation Code Section embed point then press 
the Insert button. This opens the Select Embed Type window. 

By entering code into the Internet- Password Validation Code Section embed 
point you are overriding the default method for password validation. 

  

 



Internet Application Guide 172

This embed point generates inside a method with two parameters: UserName 
and Password, which it receives from the browser. The method should return 
TRUE if the password is valid, and FALSE if it is not valid. This allows you to look 
up the information in a file, or use any other method you choose to validate the 
password. 

7. Highlight Source, then press the Select button. 

8. In the Embedded Source editor type the following source code: 
 
 USE:UserID = UserName 
 IF Access:UserList.Fetch(USE:KeyUserID) !lookup UserName in file 
        RETURN(False) 
       END 
       IF USE:UserPassword = Password          !Check the password 
        RETURN(True) 
       ELSE 
        RETURN(False) 

       END 

9. Exit the Source editor and save the changes. 

10. Press the Close button on the Embedded Source window and the OK button on 
the Procedure Properties window. 

Make and Deploy 

1. Choose Project  Make (or press the Make icon button on the toolbar). 

Your Web application is ready to deploy. 

2. Press the OK button on the compile results window. 

3. Open Windows Explorer (or Windows NT Explorer). 

4. Copy WebTree.exe from the C:\Clarion6\Examples\WebTutor directory to the 
C:\CWICWEB\EXEC\WebTutor directory.  



TUTORIAL – Advanced Web Programming Techniques 173

Examine the application 

1. Restart the WebTree application in the browser (CLICK on the Restart link). 

2. Press the Products button. 

3. Press the Insert button to add a new product. 

 The Browser’s authentication window appears. 

4. In the UserName field, type Fred. 

5. In the Password field, type Wilma. 

The values you entered are in the Userlist file. This file was precreated with two 
users. Note that there is no procedure in this application to edit this file. This is a 
common method of handling user password files where only a system 
administrator has permission to add users. Feel free to create procedures to 
update this file as you see fit. 

6. Exit the application. 



Internet Application Guide 174

Restricting Edit-In-Place 
The ABC Templates in Clarion allow you to enable Edit-In-Place with a single checkbox. 
This feature, however, is not supported when running over the Web. Over the Web, you 
must have a separate Form for updates. There is a simple method to alternate between 
edit-in-place when running locally in Windows and calling a form when running over the 
Web. 

If you enable Edit-In-Place and specify an update procedure with the BrowseBox control 
template, you have two-thirds of your work done. The template generated code either 
calls a separate update procedure or does edit-in-place depending on the value of the 
BRWn.AskProcedure property. Set the BRWn.AskProcedure property to 0 (zero) and you 
have Edit-in-Place; Set it to 1 (One) and you call the update procedure. 

To use Edit-in-place for local Windows and a form when running over the Web: 

1.  Select the BrowseProduct procedure, then press the Properties icon button. 

2.  In the UpdateButton section of the Procedure Properties window, check the Use 
Edit in Place box.  

Notice that an update procedure is already specified. Make sure to leave that 
procedure named. 

Next, embed the code to set the update action to call Edit-in-Place when running 
in Windows and call the form when running over the Web.  

3. Press the Embeds button. 

 This opens the Embedded Source window. 

4. Highlight the embed point as shown below then press the Insert button. 

  

5. Highlight Source, then press the Select button. 



TUTORIAL – Advanced Web Programming Techniques 175

6. In the Embedded Source editor, type the following source code: 
 
IF WebServer.Active 

  BRW1:AskProcedure = 1 
 END 

7. Exit the Source editor and save the changes. 

8. Press the Close button on the Embedded Source window and the OK button on 
the Procedure Properties window. 

Make and Deploy 

1. Choose Project  Make (or press the Make icon button on the toolbar). 

Your Web application is ready to deploy. 

2. Press the OK button on the compile results window. 

3. Open Windows Explorer (or Windows NT Explorer). 

4. Copy WebTree.exe from the C:\Clarion6\Examples\WebTutor directory to the 
C:\CWICWEB\EXEC\WebTutor directory. 

Examine the application 

1. Restart the WebTree application in the browser (click on the Restart hyperlink). 

2. Press the Products button. 

3. Press the Insert button to add a new product. The Browser’s authentication 
window appears. 

4. In the UserName field, type Fred. In the Password field, type Wilma. Notice that 
the Update Products form appears. 

5. Exit the application. 

6. Run the application under Windows. 

7. Press the Products button. 

8. Press the Insert button to add a new product. Notice that Edit-In-Place is now 
active. 

9. Exit the application. 

Congratulations! You have sucessfully completed the tutorial portion of this manual. You 
should have enough experience now to create robust Web database applications.  

The rest of the book explains the IBC Templates, the IBC Library, and application design 
tips and techniques. Read on. 

 



Internet Application Guide 176

 



The Internet Builder Class Templates 177

10 - The Internet Builder Class Templates 
This chapter covers the Internet Builder Class (IBC) Templates in the Internet 
Developer’s Kit. These templates are designed to work with both of the template chains 
included in Clarion (ABC and Clarion). For the most part, the IBC Templates work in the 
same manner when used with either template chain. The differences are noted in the 
section where those differences appear. 

The IBC Templates are made up of a single Global Application extension template, a 
procedure template, and several code templates.  

The Global Internet Application Extension template automatically adds the Procedure 
extension template to every procedure in the application. This allows you to Web-enable 
an entire application in a single step.  

The combination of global and procedure level settings provides customization 
capabilities at either level. To make a setting application-wide, you set a Global option. 
To specify an option for a single procedure, you make the setting for that procedure. 
Many of the Global and Procedure settings are the same; the only difference is the scope 
of the setting.  

 

The Global Internet Application Extension Template 
The Global Internet Application Extension Web-enables a Clarion application. It adds the 
functionality of generating dynamic HTML when the application is accessed through the 
Application Broker. This template allows you to specify the options to use when 
generating an HTML representation of your windows and reports.  

In addition, it automatically adds the Internet Procedure Extension to every procedure in 
your application and any procedures subsequently added to the application. The 
Procedure extension allows you to override many of the global options for a specific 
procedure.  

This template allows you to customize the appearance and behavior of your application 
when it is executed over the Web. The settings you specify here are global in nature; that 
is, they affect every procedure in your application. 

You can override most of these settings on a procedure level using the Internet 
Procedure Extension’s settings. In addition, some options can be specified on a control-
by-control basis. The combination of these three levels of customization provides you 
with complete flexibility of design. 

 



Internet Application Guide 178

None of these settings affect your application when running locally as a Windows 
executable.  

Page Settings 

When run over the Web, an application’s current window is displayed inside an HTML 
page (a Web page). The page settings allow you to specify a background color or 
background image for the HTML page. The template generated code calls the 
WebWindow.SetPageBackground method to set these properties.  

Center Window on Page 
Check this box to center the HTML representation of your window inside the Web page. 
This adds <CENTER></CENTER> HTML tags to the Web page. 

Background color 
You can specify the color to use for the Web page. Specify a Color, a color equate, or 
select a color from the COLORDIALOG by pressing the ellipsis (...) button. The default is 
no color (the equate is COLOR:NONE). This means that the browser's default page color 
is used.  

Background image 
You can specify an image to display as the background for the Web page. Specify an 
image filename or select a file from a FILEDIALOG by pressing the ellipsis (...) button. 
The default is no image. 

Window Settings 

When run over the Web, an application’s current window is represented by an HTML 
<TABLE>. This allows you to set <TABLE> properties such as background color and 
border width. The prompts on this tab allow you to specify the appearance of the 
“window” (<TABLE>) portion of the HTML page. The template generated code calls the 
WebWindow.SetBackground method to set these properties.  

Background color 
You can specify the color to use for your application’s window. Specify a Color, a color 
equate, or select a color from the COLORDIALOG by pressing the ellipsis (...) button. 
The default is no color (the equate is COLOR:NONE). This means that the background 
color of the application’s window is used.  

 

You can also set colors for discrete parts of the window, such as the toolbar. See 
Window Component Options. 

Background image 
You can specify an image to display as the background for your application’s window. 



The Internet Builder Class Templates 179

Specify an image filename or select a file from a FILEDIALOG by pressing the ellipsis (...) 
button. The default is no image. 

 

A background image tiles (i.e., it repeats as many times as its size allows) inside an 
HTML <TABLE> cell representing the application’s window. Provide a small image that 
tiles to save bandwidth. 

Window border width 
Specify the border width for your application’s window. The default is 2, which makes a 
thin border. Specify a 0 border width to display no border. The template generated code 
calls the WebWindow.SetBorderWidth method to set the property.  

Help 

Enable Help for internet applications 
Check this box to enable links from Help buttons in your application. (A Help button is a 
BUTTON with the STD:Hlp attribute). If Help is enabled, a Help button will call a Web 
page based on the Help ID of the current window. This document is opened in a Browser 
window named “_HELP” which will cause a new browser window to open or if a frame 
already has that name, it displays the Help document inside that frame. The template 
generated code uses the WebWindow.SetHelpDocument method or the 
WebWindow.SetHelpURL method to set the properties you specify. You are responsible 
for creating the corresponding HTML pages. See Implementing Help in your Web 
Application. 

URL of Help documents 
The base location of the HTML files for your Help. For example, your HTML Help files are 
located in a separate subdirectory. 

Help Window Style 
You can optionally supply a style for your Help window. 

Help Ids are links within a base document 
If your Help is designed as a single document with mid-page anchors, check this box. If 
not checked, the Help buttons reference individual HTML pages. 

Help Document 
The base document containing the mid-page anchors. This field is enabled only when the 
Help Ids are links within a base document box is checked. 



Internet Application Guide 180

Window Components 

Press this button to specify the appearance of the window’s components (e.g., 
TOOLBAR, MENU, and Caption areas). See Window Component Options.  

Control 

The prompts on this tab allow you to set the defaults for generating the HTML code that 
represents each of your application’s controls.  

 
In addition to the settings here, you can set control options for individual controls in the 
procedure template’s Internet Options. See Individual Overrides for a Control. 

General 

If control disabled 
Specifies what to display on the browser when a window control is disabled. This option 
is provided because most HTML controls do not support disabling. This sets the 
WebWindow.DisabledAction property.The choices are: 

Hide 
Hides any disabled controls (the default). 

Hide if cannot disable 
Hides any disabled  control when it cannot be disabled on the Web page. Most 
HTML controls cannot be disabled. 

Show 
Displays any disabled controls. It appears normally (i.e., it will appear to be 
enabled), but changes made to the control will not affect the underlying 
application.  

Drop listboxes - Replace with Java non-drop list 
Allows you to replace a drop-down list with a page-loaded Java Listbox. If your drop-
down lists need to display more than one column, use this option. 

Sheets - Border width  
Specify the border width for SHEET controls. The default is 2, which makes a thin border. 
Specify a 0 border width to display no border. This sets the 
WebWindow.SheetBorderWidth property. 

Options - Border width  
Specify the border width for OPTION controls. This only applies to OPTIONs with the 
BOXED attribute.  The default is 2, which makes a thin border. Specify a 0 border width 
to display no border. This sets the WebWindow.OptionBorderWidth property. 



The Internet Builder Class Templates 181

Groups - Border width 
Specify the border width for GROUP controls. This only applies to GROUPs with the 
BOXED attribute.  The default is 2, which makes a thin border. Specify a 0 border width 
to display no border. This sets the WebWindow.GroupBorderWidth property. 

MDI 

This section determines the manner in which Application Menus and Toolbars are 
handled. 

 
For control over specific Menu or Toolbar items, set the MDI overrides in the Frame 
Procedure’s Internet Options. 

Frame Menu 

This section determines the manner in which Application Menus are handled. This allows 
you to specify which global menu options are displayed on “child” windows. 

Include on Child Windows 
Select an option from the drop-down list. The choices are: 

All Menu Items All menu choices appear on child windows. 
No Menu Items No menu choices appear on child windows. 

Ignore code in frame’s ACCEPT loop 
Check this box to ignore any code in the Application Frame’s ACCEPT loop for menu 
items. If not checked, any embedded code implemented in the Frame’s ACCEPT loop is 
automatically implemented in the child procedure. 

Frame Toolbar 

This section determines the manner in which Application Toolbar controls are handled. 
This allows you to specify which global Toolbar controls are displayed on “child” windows. 

Include on Child Windows 
Select an option from the drop-down list. The choices are: 

All Toolbar Items All Toolbar items appear on child windows. 

Standard Toolbar Only 
Only the Standard Toolbar items appear on child windows. These are the buttons 
added by the FrameBrowseControl template. 

No Toolbar Items No Toolbar items appear on child windows. 



Internet Application Guide 182

Ignore code in frame’s ACCEPT loop  
Check this box to ignore any code in the Application Frame’s ACCEPT loop for toolbar 
items. If not checked, any embedded code implemented in the Frame’s ACCEPT loop is 
automatically implemented in the child procedure. 

Advanced 

Horizontal Pixels per Char 
The number of pixels to consider for a character’s width when calculating the size to 
create Java applets and Images. 

Vertical Pixels per Char 
The number of pixels to consider for a character’s height when calculating the size to 
create Java applets and Images. 

 
The numbers specified affect the overall appearance of the generated HTML page. For 
example, increasing the value of Vertical Pixels per Char will make the HTML Table cells 
taller. 

Delta for grid snapping  
The number of pixels to consider before repositioning a control. Specify a value for X and 
a value for Y. Any time a control is within this range, it is not repositioned. 

Page to return to on exit 
Optionally, specify the HTML page to return to when the program ends. The template 
generated code calls the WebServer.Init method to set the 
WebServer.PagetoReturnTo property. 

Time out (seconds) 
This specifies the maximum amount of idle time (measured in seconds) before an 
application closes. The default is 600 seconds (10 minutes).  The template generated 
code calls the WebServer.Init method to set the WebServer.TimeOut property. 

Sub directory for pages 
The directory in which the application creates temporary directories (a temporary 
directory is made for each active connection) to write the dynamic HTML and graphic 
files. This is also the directory in which to deploy graphic files. If you provide a graphic in 
this directory, it is not extracted and written to the temporary directory. This defaults to 
/PUBLIC.  The template generated code calls the WebFilesManager.Init method to set 
the property. It is not appropriate to set this property at runtime. 



The Internet Builder Class Templates 183

Classes Local to Application Broker 
This specifies that the Java Support Library files are located in the /PUBLIC directory 
below the broker directory. If you are using multiple servers, you may want a single 
source from which these files are to be retrieved. In that case, you would clear the 
checkbox and designate the URL for the Java Support Library files. This sets the 
WebServer.JavaClassPath property. 

Use Long Filenames  
Check this box to allow long filnames to be created on the Web server. 

Classes 

The Classes Tab lets you specify which classes (objects) the Templates use to 
accomplish various tasks, and the source modules that contain the class definitions. This 
approach gives you the capability to use as much of the IBC Library as you want and as 
much of your own classes as you want.  

To change the class for an item or override the class, highlight it in the list, then press the 
Properties button. 

The Internet Builder Class Library Reference (on CD in .PDF format ) is a complete guide 
to the classes used by the IBC templates. It provides descriptions of all the classes, 
methods, and properties with examples for each.  

See Also: Class Overrides, Global Window Component Options 

 



Internet Application Guide 184

Global Window Component Options 
Caption 

This is the area at the top of the “window” in the HTML page. This is the portion 
representing the title bar. 

Include caption 
Check this box to display the Caption. If not checked, the caption is not used. This sets 
the WebWindow.CreateCaption property. 

Background color 
You can specify the color to use for the Caption area. Specify a Color, a color equate, or 
select a color from the COLORDIALOG by pressing the ellipsis (...) button. The default is 
Navy Blue (the equate is COLOR:Navy). If no color is specified here and you specified a 
Window background color in Window settings above, that color is used. If neither is 
specified and the application’s WINDOW has a COLOR attribute, that color is displayed 
in the browser. The template generated code calls the WebCaption.SetBackground 
method to set this property.  

Background image 
You can specify an image to display as the background for the Caption area. Specify an 
image filename or select a file from a FILEDIALOG by pressing the ellipsis (...) button. 
The default is no image. The template generated code calls the 
WebCaption.SetBackground method to set this property. 

 
A background image tiles (i.e., it repeats as many times as its size allows) inside an 
HTML <TABLE> cell representing the application’s window caption area. Provide a small 
image that tiles to save bandwidth. 

Alignment 
You can control the alignment of the text in the caption area. The choices are Left, 
Center, or Right justification. The default is Center. This sets the WebCaption.Alignment 
property. 

Font family name 
This allows you to specify the typeface to display. Keep in mind that the browser can only 
display fonts which are installed on the client’s machine. However most operating 
systems support font substitution and will display the closest matching font. The default is 
none which uses the browser’s default font. The template generated code calls the 
WebCaption.SetFont method to set this property. 



The Internet Builder Class Templates 185

Font size 
Optionally, specify the point size for the Font displayed in the caption area. The default is 
none which uses the browser’s default font size. The template generated code calls the 
WebCaption.SetFont method to set this property. 

Font color 
You can specify the Font’s color for the Caption area. Specify a Color, a color equate, or 
select a color from the COLORDIALOG by pressing the ellipsis (...) button. The default is 
white (the equate is COLOR:White). 

Menu 

This is the menu area at the top or side of the “window” in the HTML page. 

Background color 
You can specify the color to use for the Menu area. Specify a Color, a color equate, or 
select a color from the COLORDIALOG by pressing the ellipsis (...) button. If no color is 
specified here and you specified a Window background color in Window settings above, 
that color is used. If neither is specified and the application’s WINDOW has a COLOR 
attribute, that color is displayed in the browser. The template generated code calls the 
WebMenubar.SetBackground method to set this property. 

Background image 
You can specify an image to display as the background for the Menu area. Specify an 
image filename or select a file from a FILEDIALOG by pressing the ellipsis (...) button. 
The default is no image. The template generated code calls the 
WebMenubar.SetBackground method to set this property. 

 
A background image tiles (i.e., it repeats as many times as its size allows) inside an 
HTML <TABLE> cell representing the application’s menu area. Provide a small image 
that tiles to save bandwidth. 

Alignment 
You can control the position of the menu. The choices are Above Toolbar (the default), 
Left of Window, or below the Toolbar. When you use Above Toolbar, the menu is spread 
horizontally across the top of the HTML page. When you use Below the Toolbar, the 
menu is spread horizontally across the the HTML page under the Toolbar area. When 
you use Left of Window, the menu is spread Vertically to the left of the <TABLE> 
representing the application’s window. 



Internet Application Guide 186

ToolBar 

This is the toolbar area at the top of the “window” in the HTML page (below the caption 
area). 

Background color 
You can specify the color to use for the Toolbar area. Specify a Color, a color equate, or 
select a color from the COLORDIALOG by pressing the ellipsis (...) button. If no color is 
specified here and you specified a Window background color in Window settings above, 
that color is used. If neither is specified and the application’s WINDOW has a COLOR 
attribute, that color is displayed in the browser. The template generated code calls the 
WebToolbar.SetBackground method to set this property. 

Background image 
You can specify an image to display as the background for the Toolbar area. Specify an 
image filename or select a file from a FILEDIALOG by pressing the ellipsis (...) button. 
The default is no image. The template generated code calls the 
WebToolbar.SetBackground method to set this property. 

Create extra close button 
Specifies when to provide a Close button for a window. This button is in addition to any 
other buttons on the window. It is provided to replace the System Close button 
automatically provided by Windows but not automatically provided by a browser. If your 
windows all have close buttons, you do not need to provide an extra one. The choices 
are:  

Never 
Never creates an extra Close button.  

If window has system menu and no visible buttons 
Creates a Close button only when the WINDOW has a SYSTEM attribute and no 
other BUTTONs. 

If window has system menu 
Creates a Close button only when the WINDOW has a SYSTEM attribute  

Always 
Always creates a Close button. 

Image for close 
Specifies the icon to display for the Close button. Specify an icon filename or select a file 
from a FILEDIALOG by pressing the ellipsis (...) button. The default is EXIT.ICO, a small 
blue X, (distributed with Clarion). 



The Internet Builder Class Templates 187

Client Area 

This is the area of the “window” in the HTML page representing the application’s client 
area. 

Background color 
You can specify the color to use for your application’s client area. Specify a Color, a color 
equate, or select a color from the COLORDIALOG by pressing the ellipsis (...) button. If 
no color is specified here and you specified a Window background color in Window 
settings above, that color is used. If neither is specified and the application’s WINDOW 
has a COLOR attribute, that color is displayed in the browser. The template generated 
code calls the WebClientArea.SetBackground method to set this property. 

Background image 
You can specify an image to display as the background for your application’s client area. 
Specify an image filename or select a file from a FILEDIALOG by pressing the ellipsis (...) 
button. The default is no image. The template generated code calls the 
WebClientArea.SetBackground method to set this property. 

 
A background image tiles (i.e., it repeats as many times as its size allows) inside an 
HTML <TABLE> cell representing the application’s client area. Provide a small image 
that tiles to save bandwidth. 

Class Overrides 

Override default class 
To override the IBC class, check this box and specify the Class Name, Header file (.INC), 
and Implementation file (.CLW) in the fields below. 

Class Name 
Specify the name of the class to use or the default class name if you wish to override the 
default class. 

Header file 
Specify a header file (the file containing the Class declarations) or select a file from a 
FILEDIALOG by pressing the ellipsis (...) button.  

Implementation file  
Specify an implementation file (the file containing the Class definitions or or source code) 
or select a file from a FILEDIALOG by pressing the ellipsis (...) button.  



Internet Application Guide 188

Internet Procedure Extension Template 
This template allows you to customize the appearance and behavior of a procedure when 
it is executed over the Web. The settings you specify here are local in nature, that is they 
affect only this procedure. To change Global Settings: press the Global Button on the 
Application Generator, then press the Extensions button, and modify the settings for the 
Internet Application Extension.  

To modify the settings, press the Internet Options button on the Procedure Properties 
window. 

 

None of these settings affect the way your application works when running locally as a 
Windows executable.  

Page Settings 

When run over the Web, an application’s window is displayed inside an HTML page (a 
Web page). The page settings allow you to specify a background color or background 
image for the HTML page. The template generated code calls the 
WebWindow.SetPageBackground method to set these properties.  
Override Global settings 
Check this box to override the Page settings in the Internet Application Global Extension 
template. Checking this box enables the other prompts. 

Center Window on Page 
Check this box to center the HTML representation of your window inside the Web page. 
This adds <CENTER></CENTER> HTML tags to the Web page. 

Background color 
You can specify the color to use for the Web page. Specify a Color, a color equate, or 
select a color from the COLORDIALOG by pressing the ellipsis (...) button. The default is 
no color (the equate is COLOR:NONE). This means that the browser's default page color 
is used.  

Background image 
You can specify an image to display as the background for the Web page. Specify an 
image filename or select a file from a FILEDIALOG by pressing the ellipsis (...) button. 
The default is no image. 



The Internet Builder Class Templates 189

Window Settings 

When run over the Web, an application’s window is represented by an HTML <TABLE>. 
The prompts on this tab allow you to specify the appearance of the “window” portion of 
the HTML page which displays when running the application over the Web. 

Override Global settings 
Check this box to override the Window settings in the Internet Application Global 
Extension template. Checking this box enables the other prompts. 

Background color 
You can specify the color to use for your application’s window. Specify a Color, a color 
equate, or select a color from the COLORDIALOG by pressing the ellipsis (...) button. 
The default is no color (the equate is COLOR:NONE), this means that the background 
color of the application’s window is used. The template generated code calls the 
WebWindow.SetBackground method to set this property. 

Background image 
You can specify an image to display as the background for your application’s window. 
Specify an image filename or select a file from a FILEDIALOG by pressing the ellipsis (...) 
button. The default is no image. The template generated code calls the 
WebWindow.SetBackground method to set this property. 

 

A background image tiles (i.e., it repeats as many times as its size allows) inside an 
HTML <TABLE> cell representing the application’s window. Provide a small image that 
tiles to save bandwidth. 

Window border width 
Specify the border width for your application’s window. The default is 2, which makes a 
thin border. Specify a 0 border width to display no border. 

Help 

Override Global settings 
Check this box to override the Help settings in the Internet Application Global Extension 
template. Checking this box enables the other prompts. 

URL of Help documents 
The base location  of the HTML files for your Help. For example, your HTML Help files 
are located in a separate subdirectory. 

Help Window Style 
You can optionally supply a style for your Help window 
 
 



Internet Application Guide 190

Help Ids are links within a base document 
If your Help is designed as a single document with mid-page anchors, check this box. If 
not checked, the Help buttons reference individual HTML pages. 

Help Document 
The base document containing the mid-page anchors. This field is enabled only when the 
Help Ids are links within a base document box is checked. 

Window Components 
Press this button to specify settings to specify the appearance of the window’s 
components (e.g., TOOLBAR, MENU, and Caption areas). These settings override any 
corresponding Global settings. See Procedure Window Component Options. 
Return if launched from browser 
Closes the procedure when executed over the Web. This effectively disables Web access 
to the procedure. 

Controls 

To Override Global settings: 
Check the box to the left of an option to override the control settings in the Internet 
Application Global Extension template. Checking this box enables the prompt for that 
option. 

General 

If control disabled 
Specifies what to display on the browser when a window control is disabled. This option 
is provided because most HTML controls do not support disabling. This sets the 
WebWindow.DisabledAction property.The choices are: 

Hide  Hides any disabled controls (the default). 
Hide if cannot disable 
Hides any disabled  control when it cannot be disabled on the Web page. Most HTML 
controls cannot be disbled. 

Show Displays any disabled controls. It appears normally (i.e., it will appear to 
be enabled), but changes made to the control will not affect the 
underlying application.  



The Internet Builder Class Templates 191

 

Drop listboxes 

Replace with Java non-drop list 
This allows you to replace a drop-down list with a page-loaded Java Listbox. If your drop-
down lists need to display more than one column, use this option. 

Sheets 

Border width 
Specify the border width for SHEET controls. The default is 2, which makes a thin border. 
Specify a 0 border width to display no border. This sets the 
WebWindow.SheetBorderWidth property. 

Options 

Border width 
Specify the border width for OPTION controls. This only applies to OPTIONs with the 
BOXED attribute.  The default is 2 for a thin border. Specify a 0 border width to display no 
border. This sets the WebWindow.OptionBorderWidth property. 

Groups 

Border width 
Specify the border width for GROUP controls. This only applies to GROUPs with the 
BOXED attribute.  The default is 2, which makes a thin border. Specify a 0 border width 
to display no border. This sets the WebWindow.GroupBorderWidth property. 



Internet Application Guide 192

Individual Control Overrides 

This section allows you to override the appearance or behavior of individual controls in 
the window. Highlight the control to modify and press the Properties button. See 
Individual Overrides for a Control.  

MDI 

This section determines the manner in which Application Menus and Toolbars are 
handled. 

 
For control over specific Menu or Toolbar items, set the MDI overrides in the Frame 
Procedure’s Internet Options. 

Merge Frame Menu 
Check this box to Merge the Frame’s Menu when running this procedure. 

Merge Frame Toolbar 
Check this box to Merge the Frame’s Toolbar when running this procedure. 
For a Frame Procedure, you have additional options. See Frame Procedure MDI Options.  

Advanced 

Formatting 

Override Global settings 
Check this box to override the  formatting settings in the Internet Application Global 
Extension template. Checking this box enables the other prompts. 

Horizontal Pixels per Char 
The number of pixels to consider for a character’s width when calculating the size to 
create Java applets and Images. 

Vertical Pixels per Char 
The number of pixels to consider for a character’s height when calculating the size to 
create Java applets and Images. 

Delta for grid snapping 
The number of pixels to consider before repositioning a control. Specify a value for X and 
a value for Y. Any time a control is within this range, it is not repositioned. 

 
The numbers specified affect the overall appearance of the generated HTML page. For 
example, increasing the value of Vertical Pixels per Char will make the HTML Table cells 
taller. 



The Internet Builder Class Templates 193

Security 

Transfer over a secure connection 
If checked, data is transmitted using a Secure Socket Layer (SSL). This allows secure 
transactions on a procedure level. Keep in mind that encryption has a marked effect on 
performance. You should only enable security for procedures which transmit sensitive 
data. 

This feature required installation of the secure version of the Application Broker. This 
feature is not available in this version. 

Restrict Access to this procedure 
Check this box to password protect the procedure and enable the two fields below.  

Password 
Specify a password or select a variable from the file schematic by pressing the ellipsis 
(...) button. A static password provides simple protection. For more information, see 
Using Passwords. 

Case Sensitive 
Check this box to enforce case sensitive validation of the password. If the box is not 
checked, case is ignored. 

Window refresh 

Show progress window 
This controls the window associated with a Report or Process procedure. It is not 
available for other procedure types. Check this box to display the window associated with 
the Report Procedure when running over the Web. If not checked, the window is ignored. 
If the window in a Report Procedure contains a Pause Button control template, the box is 
checked and cannot be changed. In a Process procedure, the box is checked and cannot 
be changed. This makes sure the window displays. 

Time between refresh 
Specify the number of seconds between each refresh. 

Action on Timer 
Specify the action to perform when the timer event is reached. The choices are:  

Partial Page refresh Redisplays Java controls and HTML entry controls to reflect 
current data. 

Submit page Sends data to server application and redraws  page as instructed 
by the server application 

Complete Page refresh Redraws the entire page. 



Internet Application Guide 194

Enable Refresh on timer 
Check this box to refresh the entire page or only the page data based on a timer. A 
TIMER attribute on a WINDOW is independant of this setting. This setting is used on the 
Web and the TIMER attribute is used when the application runs under Windows. 

 
This feature should be used sparingly to ensure minimal network traffic. 

Time between refresh 
Specify the number of seconds between each refresh. 

Action on Timer 
Specify the action to perform when the timer event is reached. The choices are:  

Partial Page refresh Redisplays Java controls and HTML entry controls to 
reflect current data. 

Submit page Sends data to server application and redraws  page as 
instructed by the server application 

Complete Page refresh Redraws the entire page. 



The Internet Builder Class Templates 195

Individual Overrides for a Control 
The prompts for individual control overrides change based on the type of control and its 
attributes. Every possible override is listed here with the conditional options noted. 

Override Global settings 
Check the box to the left of an option to override the control settings in the Internet 
Application Global Extension template. Checking this box enables the other prompts. 

Display 

If control disabled 
Specifies what to display on the browser when a window control is disabled. This option 
is provided because most HTML controls do not support disabling. This sets the 
IC:CurControl.DisabledAction property. The choices are: 

Hide    Hides any disabled controls (the default). 

Hide if cannot disable Hides any disabled  control when it cannot be disabled 
on the Web page. Most HTML controls cannot be 
disbled. 

Show Displays any disabled controls. It appears normally (i.e., 
it will appear to be enabled), but changes made to the 
control will not affect the underlying application.  

Hide if launched from browser 
Check this box to hide the control when the application is run over the Web. This allows 
you to disable display of some data or remove some functionality for the Web version of 
your application without removing it from the Windows version. 

Autospot Hyperlinks 
This option is available for LIST and STRING controls. If checked, any data displayed 
which contains a valid hyperlink (i.e., those beginning with http:, https:, ftp:, mailto:, 
news:, telnet:, wais:, or gopher:) is made into a hyperlink jump. 

Allow dynamic updates 
This option is available for STRING controls. If checked, the string control is created on 
the HTML page as a Java string control which updates whenever a partial page update 
occurs. 

 
STRING controls with a variable as the USE attribute automatically become Java String 
controls and do not need this override option. This is only appropriate for a static STRING 
which changes by a property assignment (e.g., ?String1{PROP:Text} = ‘New Text’). 



Internet Application Guide 196

Image Options 

Update Image dynamically 
This option is available for IMAGE controls. If checked, the control is created on the 
HTML page as a Java Image control which updates whenever a partial page update 
occurs.  

 
IMAGE controls with a variable as the USE attribute automatically become Java Image 
controls and do not need this override option. This is only appropriate for a static IMAGE 
which changes by a property assignment (e.g., ?Image1{PROP:Text} = ‘New.gif’). 

Alternative text 
Optionally provide alternative text to display while the image is loading. This is added to 
the HTML IMG ALT= tag. Alternative text displays while the graphic file is transferred to 
browser (before the image displays) or instead of the image if the user disables image 
display in the browser’s preferences. 

Border width 
This option is available for SHEET, OPTION (if boxed) and GROUP (if boxed) controls. 
Specify the border width for the control. The default is 2, which makes a thin border. 
Specify a 0 border width to display no border. 

HTML 

One of the most powerful features of the IBC Templates is the ability to embed HTML 
code in the HTML pages which are output by the Web-enabled application. This feature 
allows you to add any HTML code at points before or after any control on the resulting 
Web page. This code does not affect the application when it is running as a Windows 
executable. 

Using Embedded HTML, you can write any HTML code supported by the browser. You 
can insert your own custom JavaScript, Java applets, ActiveX controls, Shockwave files, 
or other objects. 

Optionally, you can check the Remove Default HTML generation box to supress 
generation of HTML for the control. 

See also: Embedding HTML. 



The Internet Builder Class Templates 197

Events 

This tab allows you to override the default event handling for a control. This tab is only 
available for controls which generate events.  

Every control has a default action. This determines how its events are processed. For 
example, a command button’s default action is to submit the page to the server 
application and return a fresh Web page.  

The ability to override the default event handling when the application is executed in a 
browser allows you to optimize the application for the Web environment and ensure that 
all of your embedded code is executed at the time you expect it to. For example, an entry 
control’s events are processed on the browser by default. This means that any code on 
the Event:Accepted for an entry control is not executed until the page is submitted by a 
command button or other control that submits a page. Using Individual control overrides, 
you can specify a partial refresh on an Entry Control’s Accepted event and embedded 
code executes as it would when running locally (under Windows). 

By default, most controls which allow data entry have their  events  processed on the 
browser. This means your embedded code would not execute at the expected time (e.g., 
code in the Event:Accepted embed point for a control would not execute until the OK 
button submitted the page). This section allows you to override the Browser’s event 
handling.  

To override a control’s event handling, highlight the event and press the Properties 
button. 

Override default action 
Check this to override the default action for the control event. Checking this box enables 
the other prompts. 

Action on Event 
Select the action to perform when the event occurs. The choices are: 

Process on Browser Allows event handling to be handled locally on the 
browser. 

Partial page refresh Specifies that all Java Controls and HTML Entry controls 
should receive and display updated data. 

Complete page refresh Replaces the entire page. 



Internet Application Guide 198

Classes 

The Classes Tab lets you specify which classes (objects) the Templates use to 
accomplish various tasks, and the source modules that contain the class definitions. This 
approach gives you the capability to use as much of the IBC Library as you want and as 
much of your own classes as you want.  

To change the class for an item or override the class, highlight it in the list, then press the 
Properties button. 

Override default class 
To override the IBC class, check this box and specify the Class Name, Header file, and 
Implementation file in the fields below. 

Class Name 
Specify the name of the class to use or the default class name if you wish to override the 
default class.  

If you choose another class from the IBC Library, you do nto need to specify a Header or 
Implementation file. 

Header file 
Specify a header file (the file containing the Class declarations) or select a file from a 
FILEDIALOG by pressing the ellipsis (...) button.  

Implementation file 
Specify an implementation file (the file containing the Class definitions or or source code) 
or select a file from a FILEDIALOG by pressing the ellipsis (...) button.  



The Internet Builder Class Templates 199

Procedure Window Component Options 
Caption 

This is the area at the top of the “window” in the HTML page. 

Override Global settings 
Check this box to override the Caption settings in the Internet Application Global 
Extension template. Checking this box enables the other prompts. 

Include caption 
Check this box to display the Caption. If not checked, the Caption is not used.  

Background color 
You can specify the color to use for the Caption area. Specify a Color, a color equate, or 
select a color from the COLORDIALOG by pressing the ellipsis (...) button. The default is 
Navy Blue color (the equate is COLOR:Navy). If no color is specified and the 
application’s WINDOW has a COLOR attribute, that color is displayed in the browser. 
The template generated code calls the WebCaption.SetBackground method to set this 
property. 

Background image 
You can specify an image to display as the background for the Caption. Specify an image 
filename or select a file from a FILEDIALOG by pressing the ellipsis (...) button. The 
default is no image. The template generated code calls the WebCaption.SetBackground 
method to set this property. 

 
A background image tiles (i.e., it repeats as many times as its size allows) inside an 
HTML <TABLE> cell representing the application’s window caption area. Provide a small 
image that tiles to save bandwidth. 

Alignment 
You can control the alignment of the text in the caption area. The choices are Left, 
Center, or Right justification. The default is Center.  

Font family name 
This allows you to specify the typeface to display. Keep in mind that the browser can only 
display fonts which are installed on the client’s machine.  

Font size 
Optionally, specify the point size for the Font displayed in the caption Area. The default is 
no size specified, which uses the browser’s default font size.  



Internet Application Guide 200

Font color 
You can specify the Font’s color for the Caption area. Specify a Color, a color equate, or 
select a color from the COLORDIALOG by pressing the ellipsis (...) button.  

Menu 

This is the menu area at the top or side of the “window” in the HTML page.  

Override Global settings 
Check this box to override the Menu settings in the Internet Application Global Extension 
template. Checking this box enables the other prompts. 

Background color 
You can specify the color to use for the Menu area. Specify a Color, a color equate, or 
select a color from the COLORDIALOG by pressing the ellipsis (...) button.  The template 
generated code calls the WebMenubar.SetBackground  method to set this property. 
 
Background image 
You can specify an image to display as the background for the Menu area. Specify an 
image filename or select a file from a FILEDIALOG by pressing the ellipsis (...) button. 
The default is no image. The template generated code calls the 
WebMenubar.SetBackground method to set this property. 

 
A background image tiles (i.e., it repeats as many times as its size allows) inside an 
HTML <TABLE> cell representing the application’s menu area. Provide a small image 
that tiles to save bandwidth. 

Alignment 
You can control the position of the menu alignment. The choices are Above Toolbar (the 
default) or Left of Window.  

Toolbar 

This is the toolbar area at the top of the “window” in the HTML page (below the caption 
area). 

Override Global settings 
Check this box to override the Toolbar settings in the Internet Application Global 
Extension template. Checking this box enables the other prompts. 

Background color 
You can specify the color to use for the Toolbar area. Specify a Color, a color equate, or 
select a color from the COLORDIALOG by pressing the ellipsis (...) button.  The template 
generated code calls the WebToolbar.SetBackground method to set this property. 



The Internet Builder Class Templates 201

Background image 
You can specify an image to display as the background for the Toolbar area. Specify an 
image filename or select a file from a FILEDIALOG by pressing the ellipsis (...) button. 
The default is no image. The template generated code calls the 
WebToolbar.SetBackground method to set this property. 

 
A background image tiles (i.e., it repeats as many times as its size allows) inside an 
HTML <TABLE> cell representing the application’s toolbar area. Provide a small image 
that tiles to save bandwidth. 

Close button 

Override Global settings 
Check this box to override the Close button settings in the Internet Application Global 
Extension template. Checking this box enables the other prompts. 

Create extra close button 
Specifies when to provide a Close button for a window.  

Image for close 
Specify the icon to display for the Close button. Specify an icon filename or select a file 
from a FILEDIALOG by pressing the ellipsis (...) button. The default is exit.ico (distributed 
with Clarion for Windows). 

Client Area 

This is the area of the “window” in the HTML page representing the application’s client 
area. 

Override Global settings 
Check this box to override the Client Area settings in the Internet Application Global 
Extension template. Checking this box enables the other prompts. 

Background color 
You can specify the color to use for the application’s client area. Specify a Color, a color 
equate, or select a color from the COLORDIALOG by pressing the ellipsis (...) button. 
The template generated code calls the WebClientArea.SetBackground method to set 
this property. 

Background image 
You can specify an image to display as the background for your application’s client area. 
Specify an image filename or select a file from a FILEDIALOG by pressing the ellipsis (...) 
button. The default is no image. The template generated code calls the 
WebClientArea.SetBackground method to set this property. 

 



Internet Application Guide 202

 

A background image tiles (i.e., it repeats as many times as its size allows) inside an 
HTML <TABLE> cell representing the application’s client area. Provide a small image 
that tiles to save bandwidth. 



The Internet Builder Class Templates 203

Frame Procedure MDI Options 
Application Menu 

Override Global settings 
Check this box to override the Menu MDI settings in the Internet Application Global 
Extension template. Checking this box enables the other prompts. 

Include on Child Windows 
Select the option from the drop-down list. The choices are: 

Global Setting Menu choices appear on child windows as specified in 
the Global options. 

All Menu Items  All menu choices appear on child windows. 

No Menu Items  No menu choices appear on child windows. 

Selected Menu Items Allows you to select individual menu options from the list 
below. 

Ignore code in frame’s ACCEPT loop 
Check this box to ignore any embedded code in the Application Frame’s ACCEPT loop 
for menu items. 

Application Toolbar 

This section determines the manner in which Application Toolbar controls are handled. 
This allows you to specify which global Toolbar controls are displayed on “child” windows. 

Override Global settings 
Check this box to override the Toolbar MDI settings in the Internet Application Global 
Extension template. Checking this box enables the other prompts. 



Internet Application Guide 204

Include on Child Windows 
Select the option from the drop-down list. The choices are: 

Global Setting Toolbar controls appear on child windows as specified in 
the Global options. 

All Toolbar Items All Toolbar items appear on child windows. 

Standard Toolbar Only Only the Standard Toolbar items appear on child 
windows. 

No Toolbar Items No Toolbar items appear on child windows. 

Selected Toolbar Items Allows you to select individual Toolbar items from the list 
below. 

Ignore code in frame’s ACCEPT loop 
Check this box to ignore any embedded code in the Application Frame’s ACCEPT loop 
for toolbar items. 



The Internet Builder Class Templates 205

Code Templates 
Dynamic HTML Code Template 

This code template allows you to insert dynamic HTML code in any of the Internet embed 
points. This template is only available for Embed points which can write to the delivered 
HTML page at runtime. 

You can specify any valid Clarion expression in the entry box. Any variables used in the 
expression will use the current value at the time the HTML code is written. 

 
When creating your expression to write HTML code, you must handle special characters, 
such as <, by using two characters in succession.  

This template uses the Target.WriteLn method to write the value of the expression to 
the delivered HTML page. 

See also: Embedding HTML  

Static HTML Code Template 

This code template allows you to insert static HTML code in any of the Internet embed 
points. This template is only available for Embed points which can write to the delivered 
HTML page at runtime. 

You can specify any valid HTML code in the entry box.  

This template uses the Target.WriteLn method to write the HTML code to the delivered 
HTML page. 

 
If you use the Static HTML Code Template, special characters are handled automatically.  

See also: Embedding HTML  



Internet Application Guide 206

GetCookie Code Template 

This template allows you to retrieve a cookie from the client’s machine.  

Cookie Name 
Provide a name for the cookie. This is the name used in the SetCookie Code template to 
write the cookie. If the cookie does not exist, a null value is assigned to the Variable to 
Set. 

Variable to Set 
Select a variable from the file schematic by pressing the ellipsis (...) button. The value of 
the cookie is assigned to the variable. 

See also: SetCookie Code Template, Cookies (Persistent Client Data) 

SetCookie Code Template 

This template allows you to set a cookie on the client’s machine for later retrieval.  

Cookie Name 
Provide a name for the cookie. This is the name to use in the GetCookie Code template 
to retrieve the cookie. If a cookie of the same name exists, it is overwritten. 

New Value 
Specify a value or select a variable from the file schematic by pressing the ellipsis (...) 
button. This value is assigned to the cookie. 

See also: GetCookie Code Template, Cookies (Persistent Client Data) 

Cookies (Persistent Client Data) 

Cookies are a method for Web servers to both store and retrieve information on the client 
side of the connection. This allows a server to store data on the client’s machine and 
retrieve it later. 

A server can send a piece of data to the client (browser) which the client stores locally. 
This is known as a cookie (the name has no known origin). Cookies contain a range of 
URLs for which it is valid. Later, when the client returns to a URL within that range, the 
server can query the cookie and use that data. A server cannot retrieve information from 
other servers (i.e., a server cannot query a cookie that is out of its domain range). 

This mechanism is similar to the INI file storage and retrieval paradigm in Windows 
(GETINI and PUTINI) and provides a method for identifying user preferences, and other 
data. For example, an application which requires a user to provide their name before 
entering can use a cookie to avoid the Login process after the first visit.  

 



The Internet Builder Class Templates 207

 
Cookies are machine specific so a client who accesses a site from more than one 
machine will need to provide the cookie information once for each machine so a cookie is 
stored on the machine. In addition, cookies are browser specific, so a client who uses 
more than one browser, will need to set and get cookies for each browser. 

Your Web-enabled applications can use cookies to store user preferences such as the 
default city and state for new records. These settings can be retrieved the next time the 
user runs the application over the Web. 

See also: GetCookie Code Template, SetCookie Code Template 

AddServerProperty Code Template 

This template allows you to set the value of the specified outgoing http item in the HTTP 
header. 

Property Name 
Provide the property name to set. 

Property Value 
Select a variable from the file schematic by pressing the ellipsis (...) button. The value of 
the variable is assigned to the property. 

See Also :  GetServerProperty Code Template 

GetServerProperty Code Template 

This template allows you to  get the value of the specified http item in the HTTP header. 

Property Name 
Provide a name for the HTTP property. If the HTTP field does not exist, a null value is 
assigned to the Variable to Set. 

Variable to Set 
Select a variable from the file schematic by pressing the ellipsis (...) button. The value of 
the property is assigned to the variable. 

See Also :  SetServerProperty Code Template 

 

 

 



Internet Application Guide 208

11 - Web Application Design Considerations 
Most common Windows application design rules apply to Web application design. It is 
equally important to provide a consistent, understandable interface under either platform.  

Keep in mind that the Web “platform” is not Windows. Your interface should be intuitive 
for users on all supported platforms. The Java controls in the Java Support Library are 
intuitive, but you may want to provide a brief explanation of how they work in your 
application to facilitate their use. 

 

Bandwidth Usage Considerations  
The web introduces one additional programming challenge—bandwidth conservation. It is 
important to keep your windows simple and utilize all the methods available to reduce the 
amount of network traffic. This section provides some pointers, but is by no means 
complete. It is intended to give you food for thought while designing applications. 

Use Partial Refresh whenever possible 

The use of a Partial Refresh, where appropriate, is the best way to optimize your Web 
applications. 

There are many times when a partial refresh is appropriate but a full refresh is the 
default. This is necessary because the templates cannot anticipate every possibility. For 
example, a multi-sorted list which has no controls populated on the Tabs performs better 
if you use Individual Control Overrides to specify a Partial refresh when a tab is selected. 
This will only change the data in the listbox instead of replacing the entire page. 

To override a SHEETs behavior for the example above, follow these steps: 

1. From the Procedure Properties window, press the Internet Options button. 

2. Select the Controls Tab. 

3. Highlight the Sheet control in the Individual Control Options list (the wizard 
generated SHEETs are usually called ?CurrentTab). 

4. Press the Properties button, then select the Events tab. 

5. Highlight the Accepted event, then press the Properties button. 

6. Check the Override default action box, then select Partial page refresh from the 
drop-down list. 

7. Press the OK buttons on all the windows to save and exit. 



Web Application Design Considerations 209

One other aspect of Partial Refresh is its use to Update Controls over the Web. In 
Windows applications, programmers often embed code to update one control when the 
value of another control changes. For example, you might embed code to change the 
total of a line item when the quantity of items changes. The Webtree tutorial application 
has code like this in the UpdateItems procedure. The embedded code is tied to the 
EVENT:Accepted on each control. In other words, when the user changes the value in a 
control and tabs off it or selects another control with a mouse click, the code is executed. 

When an application runs over the Web, ENTRY controls are processed on the browser 
by default. In other words, there is no interaction between the browser and the server 
application—unless you change the event handling options for that control. If you want to 
update controls over the Web, change the action for controls to ensure that embedded 
code is executed on the Event:Accepted. 

Be frugal with controls 

Populate as few controls as necessary on a window. This is good practice in Windows 
application design and is even more important in a browser/server implementation 

When using listboxes, populate as few controls in the list as needed to uniquely identify a 
record for a user. This reduces the amount of data sent to fill the list. If you want to 
display more data for each record, you can populate hotfields next to the listbox and they 
will update as the user scrolls. 

Use graphics sparingly 

This is a common rule for web design. You should limit the number of graphics to ensure 
rapid page loading. In addition, you should reduce the file size as much as possible to 
further save bandwidth usage. Many graphics utilities have tools to adjust graphics files 
for web usage. 

Covering the Download with a Splash Window 

In order for a browser to “run” a Web-enabled application, the Java Support Library (JSL)  
must be available to the client browser. First-time users must download either 
Clarion.CAB (for Microsoft Internet Explorer) or Clarion.ZIP  (for Netscape). In most 
browsers, the JSL is only downloaded once and remains cached (until the user clears 
that cache). Although the JSL is very compact for the degree of functionality it provides, it 
can still take several minutes to download over a 28.8 modem. With that in mind, you 
may want to use a “splash screen” window to alert first-time users that the download is in 
progress. By placing a Java Button on that window, you can prevent users from 
continuing until the JSL is downloaded and the Java button is initialized. 



Internet Application Guide 210

Create the Window and Change the BUTTON to a Java Button 

Create a procedure using the Window Procedure template. These instructions assume 
you have named your procedure-Splash. This window should contains some text and a 
Close Button control template. You can change the text on the BUTTON to Continue. 
Since the button is created as an HTML button by default, you should specify that you 
want it to be a Java button so that it will not be available until the JSL has downloaded.  

1. In the Application Tree, highlight the new procedure, then press the Properties 
icon button. 

2. Press the Internet Options button. 

3. Select the Controls tab. 

4. Highlight the close button control template (the default name is ?Close) in the 
Individual Control Options list, then press the Properties button. 

5. Select the Classes tab. 

6. Check the Override default Class box, then select the WebJavaButtonClass 
from the Class Name drop-down list. 

7. Press the OK button. 

 

Call the procedure before opening the Application Frame 

1. In the Application Tree, highlight the Main procedure, then press the Properties 
icon button. This opens the Procedure Properties window. 

2. Press the Embeds button. This opens the Embedded Source window. 

3. Highlight the embed point as shown below:  

 

4. Press the Insert button. This opens the Select Embed Type window. 



Web Application Design Considerations 211

5. Highlight Source, then press the Select button. 

6. In the Embedded Source editor, type the following source code: 

  IF WebServer.Active THEN Splash. 

This makes sure that the Splash procedure is only called when the application is 
running over the Web. 

7. Make sure this embed is listed before the call to any other procedure using the 
up or down button. 

 This ensures that the Splash procedure is called before any other window opens. 

8. Press the Close button on the Embedded Source window and the OK button on 
the Procedure Properties window. 

9. Press the Procedures button.This opens the Called Procedures window.  

10. Highlight Splash, then press the OK button. 

This connects the Splash procedure to the Main procedure in the Application 
Tree. This is necessary if your application is using Local MAPs.  



Internet Application Guide 212

Cosmetic Design Considerations 
Using Groups 

When you populate a GROUP on a WINDOW, control declaration statements do not 
necessarily end up inside the GROUP structure. This may cause an HTML 
representation that does not look like the original window. Make sure the controls you 
want inside the GROUP are actually inside the GROUP structure. 

In the first example below (Badwind), the control declaration statements are all outside 
the GROUP structure. This window displays fine in Windows because the AT attribute 
values control the position and size of the GROUP box. When running over the Web, the 
GROUP box is an HTML <TABLE> cell and is controlled by its contents. 

 
Badwind  WINDOW('Caption'),AT(,,260,120),GRAY 
           GROUP('Customer Info'),AT(5,9,205,102),USE(?Group1),BOXED 
           END 
           PROMPT('Customer:'),AT(11,28),USE(?CUST:Name:Prompt) 
           ENTRY(@s30),AT(61,26)USE(CUST:Name),LEFT,REQ 
           PROMPT('Address:'),AT(15,47),USE(?CUST:Address:Prompt) 
           ENTRY(@s30),AT(61,45),USE(CUST:Address),LEFT 
           PROMPT('City:'),AT(29,69),USE(?CUST:City:Prompt) 
           ENTRY(@s20),AT(61,67),USE(CUST:City),INS 
           PROMPT('State:'),AT(25,88),USE(?CUST:State:Prompt) 
           ENTRY(@s2),AT(61,86),USE(CUST:State),LEFT,UPR 
         END 

In the second example (Goodwind), the control declaration statements are within the 
GROUP structure (i.e., between the GROUP and END statements) and will display as 
expected when run over the Web. 
 
Goodwind WINDOW('Caption'),AT(,,260,120),GRAY 
          GROUP('Customer Info'),AT(5,9,205,102),USE(?Group1),BOXED 
           PROMPT('Customer:'),AT(11,28),USE(?CUST:Name:Prompt) 

           ENTRY(@s30),AT(61,26)USE(CUST:Name),LEFT,REQ 
           PROMPT('Address:'),AT(15,47),USE(?CUST:Address:Prompt) 
           ENTRY(@s30),AT(61,45),USE(CUST:Address),LEFT 
           PROMPT('City:'),AT(29,69),USE(?CUST:City:Prompt) 
           ENTRY(@s20),AT(61,67),USE(CUST:City),INS 
           PROMPT('State:'),AT(25,88),USE(?CUST:State:Prompt) 
           ENTRY(@s2),AT(61,86),USE(CUST:State),LEFT,UPR                      
          END 
         END 



Web Application Design Considerations 213

Using Images 

Java Image controls update automatically when the value of its source variable changes 
(i.e.,  whenever a partial page update occurs). To use this feature for  an IMAGE which 
changes by a property assignment (e.g., ?Image1{PROP:Text} = ‘New.gif’), use 
Individual Control Overrides for the Image Control and specify to update dynamically. 

Graphic files used by IMAGE controls are extracted to the temporary runtime directory for 
the connection unless they are found  in the /PUBLIC directory. The runtime library will 
extract files of various types, but most browsers only support GIF and JPG formats. 
Therefore, you should limit the graphic formats of IMAGE controls in a web-enabled 
application to those two types. You could also choose to hide an IMAGE which uses a 
format not supported by browsers using Individual Control Overrides. If an IMAGE is 
based on a file that is not linked in, you should deploy the image file to the application's 
directory. 

You should provide alternative text for images (in Individual Control Overrides). This is 
added to the HTML <IMG ALT=> tag. Alternative text displays while the graphic file is 
transferred to browser (before the image displays) or instead of the image if the user 
disables image display in the browsers preferences. 

Icons used in LIST controls or on BUTTONs are not automatically extracted and should 
be deployed to the /PUBLIC directory. 

If you are referencing an image in HTML code, you must indicate the location of the 
image file. If you are deploying under the EXE version of the Application Broker you can 
prefix the filename with a leading forward slash and deploy the image to the /PUBLIC 
directory. For example <IMG SRC="/LOGO.GIF">. If you are using the ISAPI DLL version 
of the Application Broker, you must use the SELF.FILES.GETAlias method to determine 
the virtual path to the file. For example: 

Target.WriteLN('<<IMG SRC="' & SELF.Files.GetAlias('mygif.gif')& '">') 

would find the mygif.gif file in any directory exposed to the server application. 



Internet Application Guide 214

User Interface Design Considerations  
MDI window access 

Windows applications often use a Multiple Document Interface (MDI). This allows several 
instances of an MDI child window to open. Each of these Child windows is available and 
can receive focus using several navigation methods (e.g., the Window menu).  This is 
very convenient, but has some implications when porting the application to the Web 
platform. A web page in a browser is a single document, however, the underlying server 
application can be an MDI application and allow multiple windows. Many windows could 
be open on the server application, but the browser only displays the current window. You 
should keep this in mind when designing your application. 

In a Web-enabled application, you can allow all menu and toolbar command to be visible 
on child windows. This can be useful to allow a user to enter different areas of the 
application without closing a child window to get to the main menu or toolbar. This also 
has the potential pitfall of allowing a user to open multiple instances of a procedure. 
Although only one will be visible at a  time, there could be several windows open. If there 
are two or more of the same window open, it may appear to the user that the procedure 
did not close when the Close button was pressed. For this reason, you should either 
restrict access to the Global Menu/toolbar or limit each MDI procedure to a single 
instance using Thread limiting code. One technique of limiting threads is demonstrated in 
one of the standard Clarion Examples—EventMgr.APP.  

Restricting Edit-In-Place     

The ABC Templates in Clarion allow you to enable Edit-In-Place with a single checkbox. 
This feature, however, is not supported when running over the Web. Over the Web, you 
must have a separate Form for updates. There is a simple method to alternate between 
edit-in-place when running locally in Windows and calling a form when running over the 
Web. 

If you enable Edit-In-Place and specify an update procedure with the BrowseBox control 
template, you have two-thirds of your work done. The template generated code either 
calls a separate update procedure or does edit-in-place depending on the value of the 
BRWn.AskProcedure property. Set the BRWn.AskProcedure property to 0 (zero) and you 
have Edit-in-Place; Set it to 1 (One) and you call the update procedure. 

To use Edit-in-place for local Windows and a form when running over the Web: 

1.  Select the Browse procedure, then press the Properties icon button. 

2.  In the UpdateButton section of the Procedure Properties window, check the Use 
Edit in Place box.  

Notice that an update procedure is already specified. Make sure to leave that 
procedure named. 



Web Application Design Considerations 215

Next, embed the code to set the update action to call Edit-in-Place when running 
in Windows and call the form when running over the Web.  

3. Press the Embeds button. This opens the Embedded Source window. 

4. Highlight the embed point as shown below then press the Insert button. 

  

5. Highlight Source, then press the Select button. 

6. In the Embedded Source editor, type the following source code: 
 
IF WebServer.Active 

  BRW1:AskProcedure = 1 
 END 

7. Exit the Source editor and save the changes. 

8. Press the Close button on the Embedded Source window. 

 

Unsupported Windows Standard Dialogs 

There are certain Windows standard dialogs which are not appropriate for an application 
running over the Web. Calling any of these will display a Not Supported Message: 
 
COLORDIALOG 
FILEDIALOG 
FONTDIALOG 
PRINTERDIALOG 

If you are calling any of these with a BUTTON control, use the Individual Control Options 
to "Hide if launched from Browser." (Internet Options  Controls). 

If you are calling the function in source code, enclose the function call inside a conditional 
structure. For example: 

 
IF NOT WebServer.Active      ! Check if running over the web 
  retval=COLORDIALOG()       ! if not, call the colordialog 
END 



Internet Application Guide 216

Using Command Line Parameters 

If your application needs to receive command line parameters, you can pass them on the 
browser's command line or via a hyperlink.  

On the browser's location (URL) entry, specify the URL followed by the executable name, 
followed by the dot zero (.0) followed by a question mark and the parameter. For 
example, 

HTTP://mydomain.com/myapp.exe.0?MyParameter 

To handle the parameter in your application, you must interrogate the 
WebServer.CommandLine property. If you are creating a hybrid application and want to 
receive command line parameters from either Windows or the Web, use code similar to 
the example below: 

 
IF WebServer.Active                    !Check if running over the 
web 
  PRE:MyField = WebServer.CommandLine  !assign value to variable 
ELSE                                   !if it is running locally 
  PRE:MyField = COMMAND('')            !assign value to variable 
END 

 
If you are passing multiple parameters, you must parse the string to access the individual 
parameters. 

Changing the Class for an individual control 
At times, you may want to change a single control to use a different class than the 
default. For example, a STRING control that displays a variable defaults to a Java String 
control and you may want it to be plain HTML text. You can change this on a control-by-
control basis on the Individual Control Overrides Classes Tab. In this example, you are 
not actually overriding the class, but merely specifying a different class to use for the 
control. 

1. From the Procedure Properties window, press the Internet Options button. 

2. Select the Controls tab. 

3. Highlight the control in the Individual Control Options list, then press the 
Properties button. 

4. Select the Classes tab, and check the Override Default Class box. 

5. Select the class to use from the drop-down list. You do not need to provide the 
Header File and Implementation files. 



Web Application Design Considerations 217

You can use the same technique to change a JavaImageControl to an HTML <IMG> 
control.  

API calls 

Windows API calls are tied to the machine on which an application is running. Web-
enabled applications are actually running on the server machine and a representation is 
sent to the client in the form of HTML pages. Therefore, any API calls in your application 
execute on the server machine.  

In many cases, this will not be appropriate. For example, playing a sound file on a server 
is generally not a good idea and the user running the application won’t hear it.  In those 
cases, you should inhibit the call when the application is running over the web.  

If you are making the call with a BUTTON control, use the Individual Control Options to 
"Hide if launched from Browser." (Internet Options  Controls). 

If you are making the call in source code, enclose the function call inside a conditional 
structure. For example: 

 
IF NOT WebServer.Active      ! Check if running over the web 
  SoundFile='fanfare.wav' 
 sndPlaySound(SoundFile,1) 
END 

In other cases, it will be appropriate to make the call on the server. For example, a 
procedure which uses MAPI to send email from the server based on an event. In those 
cases, you should make sure the call works properly on the server. It should behave the 
same way when executed over the web. 

In a similar manner, reports without Print Preview enabled will print on the server. This 
may be appropriate in some cases, but it is important to understand its behavior. 



Internet Application Guide 218

Security Considerations 
There are two methods of implementing security in your web applications.  

 Implementing security into the underlying application. 

 Restricting access (Password protecting) a procedure when it is started over the 
Web. 

The first method—implementing security into the original application—requires no 
additional consideration in your Web application. The original security enforcement in the 
Windows version should work the same way in your Web application. 

The second method—restricting access when running over the Web—uses the browser’s 
built-in authentication.  

Using Passwords 

The Internet Procedure Extension template’s Password protection uses the browser's 
built-in HTTP authentication support. When a password protected procedure is called, the 
browser's authentication window displays. You do not need to create a window to collect 
login information. Password protection is based on an area, a username and a password. 
The area is the protected procedure. 

When a browser requests a password protected area, it gets a response back requesting 
the username and password for the area.  By default, the area name is created from the 
title of the window, and the name of the procedure. This is stored in the 
WebWindow.AuthorizeArea property. The browser prompts the user for a user name, 
and a password.  These are then sent to the program for validation. If the program 
accepts the password (i.e., it RETURNs TRUE from the WebWindow.ValidatePassword 
method), the new page is displayed, otherwise the browser prompts again.  After three 
attempts the browser displays a message informing the user that access is denied. This 
page automatically returns the user to the last active place in the program. 

 
If the page has already been visited in the current session the browser will normally 
supply the user name and the password without prompting the user. This feature is built-
in to most browsers. 

Two levels of password support are built into the procedure template. The simplest 
method is to select restricted access and specify a single password or a variable.  This is 
automatically checked by the template, and ignores the username. If you use a variable, 
it compares the password entered with the variable’s current value. 



Web Application Design Considerations 219

The more advanced method is to override the WebWindow.ValidatePassword method by 
entering code into the Internet- Password Validation Code Section embed point.  This 
embed point is inside a method with two parameters: UserName and Password, which it 
receives from the browser.  You should return TRUE if the password is valid, and FALSE 
if it is not valid.  This allows you to look up the information in a file, or use any other 
method you choose to validate the password. 

Example: 
 
USE:UserID = UserName 
IF Access:UserList.Fetch(USE:UserIDKEY) 
  RETURN(False) 
END 
IF USE:UserPassword = Password 
  RETURN(True) 
Else 
  RETURN(False) 
END 

Optionally, you can change the message displayed on the browser’s password dialog by 
assigning a value to WebWindow.AuthorizeArea in the Internet-After Initializing the 
window object embed point. 



Internet Application Guide 220

Using Embedded HTML 
One of the most powerful features of the IBC Templates is the ability to embed HTML 
code in the HTML pages which are output by the web-enabled application running via the 
Application Broker. When you embed HTML code (using the special embed points added 
by the  templates), it is inserted at the specified location in the HTML file returned to the 
browser which executed the application.  

There are two methods for embedding HTML: 

1. In the Internet Procedure Extension Template, Individual Control Overrides. This 
provides two text entry controls into which you write HTML code. 

2. Using the Dynamic HTML Code Template  or the Static HTML Code Template  in 
one of the Internet embed points. These templates use the virtual method 
Target.WriteLn to write to the delivered HTML file at runtime. The Static HTML 
code template allows you to embed HTML code exactly as written. The Dynamic 
HTML template allows you to combine HTML code with variables from your 
application. 

Optionally, you can use the Target.WriteLn method yourself in embedded source code 
in any of the appropriate embed points. 

These Embed points are identified by INTERNET at the beginning of the description. 
Using the Target.WriteLn method in one of these embed points allows you to add any 
HTML code at various points in the HTML document delivered to the user at runtime. 
This code does not affect the application when it is running as a Windows program. 

For example, if you want a block of text to appear on the bottom of the page delivered by 
the Application Broker for a procedure in your application, you would insert the Static 
HTML Code Template at the Internet, before the closing </BODY> tag embed point in the 
Application Generator and specify the HTML code. This HTML code is added to the 
resulting HTML page delivered to a browser client.  

You can  use the virtual method Target.WriteLn in any the embed points where the 
Dynamic HTML Code Template and the Static HTML Code Template are available. 

Example: 

 Insert this code in the Internet, before the closing </BODY> tag  embed: 

Target.WriteLn('<<p>Copyright 2000, SoftVelocity&trade; 
Incorporated, All Rights Reserved.<</p>') 



Web Application Design Considerations 221

 
When hand-coding Clarion source to write HTML code, remember to handle special 
characters, such as <, by using two characters in succession. If you use the Static HTML 
Code Template, this is handled automatically. 

One benefit of using Clarion code in these embed points is the ability to control the HTML 
code you want to write. The example below shows a simple method of displaying a 
random hyperlink: 

 
EXECUTE RANDOM(1,5) 
 Target.WriteLn('<<A HREF="http://www.softvelocity.com">Visit SoftVelocity<</A>') 
 Target.WriteLn('<<A HREF="http://www.clariononline.com">Visit ClarionOnline<</A>') 
 Target.WriteLn('<<A HREF="http://www.icetips.com">Visit IceTips<</A>') 
 Target.WriteLn('<<A HREF="http://www.finatics.com">Visit the Finatics<</A>') 
 Target.WriteLn('<<A HREF="http://www.softvelocity.com/news.htm">SoftVelocity News<</A>') 
END 

Using references to files in embedded HTML code 

When using references to files in embedded HTML code, remember that each session 
has its own temporary directory. Therefore, /PUBLIC is never the current directory for 
delivered web pages. This means that you must reference the location of files. There are 
two ways to do this. 

If you are referencing an image in HTML code, you must indicate the location of the 
image file. If you are deploying under the EXE version of the Application Broker you can 
prefix the filename with a leading forward slash and deploy the image to the /PUBLIC 
directory. For example <IMG SRC="/LOGO.GIF">.  

If you are using the ISAPI DLL version of the Application Broker, you must use the 
SELF.FILES.GetAlias() method to determine the virtual path to the file.  

For example: 

Target.WriteLN('<<IMG SRC="' & SELF.Files.GetAlias('mygif.gif') & 
'">') 

would find the mygif.gif file in any directory exposed to the server application. 

 
The preferred method is to use the SELF.Files.GetAlias() method because it works under 
both the ISAPI DLL and the EXE version of the application broker. 

To use your own Java Applet class files, use the CODEBASE= tag as shown below. 



Internet Application Guide 222

If you are deploying under the EXE version of the Application Broker you can reference 
the <CODEBASE> as a leading forward slash and deploy the .CLASS file to the /PUBLIC 
directory. If you are using the ISAPI DLL version of the Application Broker, you must use 
the SELF.FILES.GetAlias() method to determine the virtual path to use for the 
<CODEBASE>. 

Embedded HTML Examples: 
 
!  HTML code 
 
<IMG SRC=”/mypic.gif”> 
<applet codebase=”/” code=”TickerTape.class” width=”500" height=”32"> 
</applet> 
 
!  Embedded Source Examples (in any Internet Embed Point) 
 
Target.WriteLN(‘<<IMG SRC=”’ & SELF.FILES.GETAlias(‘mygif.gif’)& ‘“>’) 
Target.Writeln(‘<<applet ‘) 
Target.Writeln(‘Codebase = “‘ & SELF.FILES.GETAlias() & ‘“ ‘) 
Target.Writeln(‘code=”TickerTape.class”>’) 
Target.Writeln(‘<</applet>’) 

 

 
In an APPLET HTMLtag, the CODEBASE attribute must precede the code attribute. This 
is listed in the wrong order in some HTML references. HTML code with the attributes in 
the wrong order can cause the applet to fail (due to a "Not Found" error). 



Web Application Design Considerations 223

Implementing Help in your Web Application 
References are made to HTML pages based on the current window’s Help ID. This is 
constructed in one of two ways: Using a Base Document with Mid-Page anchors, or 
Using individual help Documents. This is specified in the Global Application Extension 
Template or in the Procedure Extension template’s Internet Options. 

Using a Base Document with Mid-Page anchors 

This method uses a single web page with mid-page bookmarks or anchors. The call to 
the page is constructed by appending the Help ID to the base page name with a # symbol 
between them (e.g., HELP.HTM#IDNAME). Clicking on the Help button causes the page 
to open and scroll to the appropriate anchor. In the example below, the first window has a 
HelpID of ~FirstWindowID. This means that the Help button will call 
HelpFile.HTM#FirstWindowID. 

Example: 
 
<html> 
<head> 

<title>Example Help Document</title> 
</head> 
<body background=”bgrnd.gif” bgcolor=”#FFFFFF”> 
<h1 align=”center”>Program Help </h1> 
Introductory Text...... 
Introductory Text...... 
Introductory Text...... 
Introductory Text...... 
<h2 align=”center”><a name=”FirstWindowID”>Help For First Window</a></h2> 
Explanation of how this procedure works 
Explanation of how this procedure works 
Explanation of how this procedure works 
Explanation of how this procedure works 
<h2 align=”center”><a name=”SecondWindowID”>Help For Second 
Window</a></h2> 
Explanation of how this procedure works 
Explanation of how this procedure works 
Explanation of how this procedure works 
Explanation of how this procedure works 
</body> 
</html> 



Internet Application Guide 224

Using individual help Documents 

This method uses a single web page for each window. The call to the page is constructed 
by prepending the Help ID to .HTM extension.  Clicking on the Help button causes the 
page to open.  

Both methods open the page in a new browser window named “_HELP”. If you open your 
application inside a frame set where one of the frames is named “_HELP”,  the help page 
opens in that frame. 

A web-enabled application executed by the Application Broker creates HTML files in the 
/PUBLIC directory. These pages are sent to the browser which started the application 
and refreshed and re-sent when the client interacts with the application. 



Web Application Design Considerations 225

Windows Controls and their HTML Equivalents 
A web-enabled application executed by the Application Broker delivers  HTML to the 
browser which started the application and refreshed and re-sent as the user  interacts 
with the Web page representing the application. 

Certain controls translate easily to HTML, while others are created as JAVA classes 
using the Clarion Java Support Library. Certain windows controls have not been fully 
implemented in this release.  

The list below shows the standard windows controls supported by Clarion and the 
equivalent created by an Internet Connect web-enabled application. 

STRING (a variable string) 
Displays as a Java String Control, which updates dynamically. 

STRING (a text string) 
Displays as text by default. By setting individual control overrides, it can display as a Java 
String Control, which updates dynamically. If you are updating the STRING in your 
application using a property assignment, you should specify that the string update 
dynamically. 

IMAGE 
A static image displays as an HTML image <IMG> with its source specified as the 
graphic file in your application. By setting individual control overrides, it can display as a 
Java Image Control, which updates dynamically.  

REGION 
Partial support. A REGION that covers an IMAGE control and has functionality 
implemented in its EVENT:Accepted creates the HTML image as an image map 
(USEMAP=) with the functionality of the region associated with that portion of the image. 

LINE 
Not supported--use Embedded HTML to display a Horizontal Rule <HR> or an image 
<IMG SRC="file.gif">. 

BOX 
Not supported--use Embedded HTML to display an image  <IMG SRC="file.gif">. 

ELLIPSE 
Not supported--use Embedded HTML to display an image <IMG SRC="file.gif">. 



Internet Application Guide 226

ENTRY 
Created as an HTML entry field <INPUT TYPE=TEXT VALUE = value in field >. Entry 
patterns are not supported. 

BUTTON 
Created as an <INPUT TYPE=SUBMIT > unless it has an ICON, then a Java button is 
created which displays the Icon. Icons displayed on Java buttons must be deployed to 
the /PUBLIC directory. 

PROMPT 
Displays as text. 

OPTION 
Created as an HTML <OPTION>. If an OPTION has the BOXED attribute, then it is 
implemented in HTML as a <TABLE> with the border specified in the Global or 
Procedure options for OPTIONs. 

CHECK  
Created as an HTML checkbox <INPUT TYPE=CHECKBOX VALUE = value in field > 

GROUP 
If a GROUP has the BOXED attribute, then it is implemented in HTML as a <TABLE> 
with the border specified in the Global or Procedure options for GROUPs. 

LIST 
Creates a Java Listbox which supports most of the LIST attributes, including conditional 
colors and icons. Icons must be deployed to the /PUBLIC directory. When the Java 
Listbox has focus in the browser, the navigation keys are supported (arrow-up, page-up, 
etc.). If the LIST has a locator, the Java Listbox supports it when it has focus. Double-
click handling is also supported. Drag-and-drop, edit-in-place, and right-click popups are 
not supported. 

Tree Creates a Java Tree Listbox. Supports all attributes, including conditional 
colors and icons. Icons must be deployed to the /PUBLIC directory. 

 FileDropCombo  
Created as an HTML drop-down (<SELECT> structure) with the values 
from the file created as Options. This does not support multiple columns. 
Optionally, you can create as a Java Non-drop list which supports 
multiple columns. 

DropList 
Created as an HTML drop-down (<SELECT> structure). This does not 
support multiple columns. Optionally, you can create as a Java Non-drop 
list which supports multiple columns. 

  



Web Application Design Considerations 227

DropCombo 
Created as an HTML entry field <INPUT TYPE=TEXT VALUE = value in field > 

COMBO 
Created as an HTML entry field <INPUT TYPE=TEXT VALUE = value in field >. 

SPIN 
Created as an HTML entry field <INPUT TYPE=TEXT VALUE = value in field >. 

TEXT 
Created as an HTML Text field <TEXTAREA >. 

CUSTOM (.VBX) 
Not supported. 

MENU 
Creates a list of hyperlinks which display across the top of the  HTML page or to the left 
of the window, as specified in the Global Internet Options. 

ITEM 
See MENU. 

RADIO 
Creates an HTML Radio button. 

APPLICATION 
HTML <TABLE> inside an HTML page. 

WINDOW 
HTML <TABLE> inside an HTML page. 

REPORT 
If Print Preview is enabled, this creates a series of HTML pages with Java navigation 
buttons (Next page, Previous page, etc.). If Preview is not enabled, the report will print on 
the server. 

HEADER, FOOTER, BREAK, FORM, DETAIL 
See REPORT. 

OLE 
Not Supported (except via embedding an ActiveX in Embedded HTML). 

PROGRESS 
Not supported. 



Internet Application Guide 228

SHEET 
Created as JAVA Tab controls.  

TAB 
Created as JAVA Tab controls.  

PANEL 
Not supported. You may use a GROUP with the appropriate borderwidth to provide a 
similar appearance. 

TOOLBAR 
Created as a row in an HTML <TABLE>. Controls on the toolbar are placed as specified 
in the Global or procedure Internet Options. 



Web Application Design Considerations 229

Hand Coded Applications 
About This Section 

The Internet Connect Templates generate the code necessary to Web-enable Clarion 
applications. However, you do not have to use the Internet Connect Templates to Web-
enable your programs. 

That is, you can use the IBC Library to Web-enable your hand coded programs. This 
chapter presents a minimal “Hello Web” hand coded program that uses the IBC Library. 
This chapter also discusses the IBC Library’s project system requirements. 

The easiest way to learn to use the IBC Library within hand coded programs is to Web-
enable an application with the Internet Connect Templates, then study the template 
generated code. 

HelloWeb Example Program 

The following hybrid Web/Windows program displays a single window or Web page with 
a “Hello Web” message and a “Goodbye Web” button to shut down the program. 

 
HelloWeb   PROGRAM 
LinkBaseClasses   EQUATE(1)                    !Enable LINK on CLASS declarations 
                                               !so linker can find implementation 
                                               !(.clw) files 
BaseClassDllMode  EQUATE(0)                    !Activate DLL on CLASS declarations 
                                               !for required 32-bit dereference 
 INCLUDE('ICBROKER.INC')                       !Declare BrokerClass 
 INCLUDE('ICWINDOW.INC')                       !Declare WebWindowClass 
 INCLUDE('ICSTD.EQU')                          !Declare IC standard EQUATEs 
 MAP 
  Hello                                        !Prototype Hello procedure 
  WebControlFactory(SIGNED),*WebControlClass   !Prototype WebControlFactory 
     MODULE('') 
       SetWebActiveFrame(<*WebFrameClass>)     !Prototype SetWebActiveFrame 
     END 
   END 
Broker          BrokerClass                    !Declare Broker object 
HtmlManager     HtmlClass                      !Declare HtmlManager object 
JavaEvents      JslEventsClass                 !Declare JavaEvents object 
WebServer       WebServerClass                 !Declare WebServer object 
WebFilesManager WebFilesClass                  !Declare WebFilesManager object 
ICServerWin     WINDOW,AT(-1,-1,0,0)           !Declare “invisible” server window 
                END 
  CODE 
  SetWebActiveFrame()                          !Tell IBC objects (WebWindow) there     
                                               !is no active APPLICATION frame 
  WebFilesManager.Init(1, '')                  !Initialize WebFilesManager 



Internet Application Guide 230

  JavaEvents.Init                              !Initialize JavaEvents 
  Broker.Init('HelloWeb', WebFilesManager)     !Initialize Broker 
  HtmlManager.Init(WebFilesManager)            !Initialize HtmlManager 
  WebServer.Init(Broker,'',600,'',WebFilesManager)  !Initialize WebServer 
  IF (WebServer.GetInternetEnabled())          !If launched by Application Broker 
    OPEN(ICServerWin)                          ! open “invisible” window on server 
    ACCEPT 
      IF (EVENT() = EVENT:OpenWindow) 
        WebServer.Connect                      !Establish channel to App Broker 
        Hello                                  !Call Hello (Web mode) 
        BREAK 
      END 
    END 
  ELSE                                         !If not launched by App Broker 
    Hello                                      ! call Hello (Windows mode) 
  END 
  WebServer.Kill                               !Shut down WebServer object 
  HtmlManager.Kill                             !Shut down HtmlManager object 
  Broker.Kill()                                !Shut down Broker object 
  JavaEvents.Kill                              !Shut down JavaEvents object 
  WebFilesManager.Kill                         !Shut down WebFilesManager object 
Hello   PROCEDURE 
 
Window WINDOW,AT(,,139,59),GRAY,DOUBLE         !declare window 
   STRING('Hello Web!'),AT(51,14),USE(?Hello)  ! with Hello Web string 
   BUTTON('Goodbye Web!'),AT(39,31),USE(?Bye)  ! and Goodbye Web button 
       END 
WebWindow WebWindowClass                       !Declare WebWindow object 
  
  CODE 
  OPEN(window)                                 !Open the window 
  WebWindow.Init(WebServer,HtmlManager)        !Initialize WebWindow object by 
                                               ! gathering info about window 
                                               ! and its controls 
  ACCEPT 
    IF WebWindow.TakeEvent() THEN BREAK.       !Web event handling: 
                                               ! handles all events necessary 
                                               ! to respond to Client request 
                                               ! e.g. generate new HTML page 
    IF EVENT() = EVENT:Accepted                !Usual Windows event handling 
   POST(Event:CloseWindow)                     !Close window on ?Bye button 
  END 
  END 
  CLOSE(window)                                !Close the window 
  WebWindow.Kill                               !Shut down WebWindow object 
  RETURN 



Web Application Design Considerations 231

WebControlFactory PROCEDURE(SIGNED Type)       !Instantiate WebControl objects 
NewControl    &WebControlClass                 ! requested by WebWindow object 
  CODE 
  CASE (Type) 
  OF CREATE:ClientArea 
    NewControl &= NEW WebClientAreaClass 
  OF CREATE:String 
    NewControl &= NEW WebHtmlStringClass 
  OF CREATE:TextButton 
    NewControl &= NEW WebHtmlButtonClass 
  END 
  IF (~NewControl &= NULL) 
  NewControl.IsDynamic = TRUE 
 END 
  RETURN NewControl 



Internet Application Guide 232

Hand Coded Project Considerations 

The IBC Library requires several components in order to successfully compile and link. 
Specify the following components with the Project Editor dialog. See The Project System 
in the Online User’s Guide for more information. 

ICSTD.CLW 

ICSTD.CLW contains a variety of procedures that are shared by several different IBC 
objects. These procedures are prototyped in ICSTD.INC. These procedures are not 
methods of a CLASS, and therefore cannot be identified to the linker by the LINK 
attribute like the IBC methods are. To locate these procedures for the linker, you must 
add the ICSTD.CLW file to the External source files branch of the project tree. 
ICSTD.CLW is installed by default to the Clarion LIBSRC\ directory. 

DOS Database Driver 

The IBC Library objects use the DOS Database Driver to write the HTML code and JSL 
data requested by Client browsers. You must add the DOS driver to the Database driver 
libraries branch of the Project tree to resolve IBC references to DOS driver procedures. 

ASCII Database Driver 

The IBC Library objects use the ASCII Database Driver to process reports. You must add 
the ASCII driver to the Database driver libraries branch of the Project tree to resolve IBC 
references to ASCII driver procedures. 

C60HTMx.LIB 

C60HTMx.LIB contains a variety of compiled objects that are shared by several different 
IBC objects. These executable objects are prototyped in ICSTD.INC. To locate these 
executables for the linker, you must add the C60HTMx.LIB file to the Library, object, 
and resource files branch of the project tree.  

 



IBC Library Quick Reference 233

12 - IBC Library Quick Reference 
The Internet Connect Templates rely heavily on the Internet Builder Class (IBC) Library to 
accomplish the tasks necessary to create a hybrid Web/Windows application. This 
chapter briefly documents the IBC Library methods and properties referenced by the 
Internet Connect Templates, as well as other IBC Library methods and properties you are 
likely to use during the course of developing your hybrid Web/Windows application. 

For complete documentation of these items and many more, see the IBC Library 
Reference. All the IBC Library methods and properties are fully documented in the IBC 
Library Reference. The IBC Library Reference is available in electronic .PDF format on 
the SoftVelocity web site. 



Internet Application Guide 234

Classes and Their Template Generated Objects 

The Internet Connect templates instantiate objects from the IBC Library. The object 
names are usually similar to the corresponding class names, but they are not exactly the 
same. As a result, your Web-enabled application’s generated code may contain 
statements similar to these: 
 
Broker.Init 
MainFrame.TakeEvent 
IC:CurFrame.CopyControlsToWindow 

WebWindow.OptionBorderWidth = 2 
IC:CurControl.Init 
IC:CurControl.DisabledAction = DISABLE:Show 
WebMenubar.SetBackground(16711680, '') 
HtmlPreview.Init(WebServer, HtmlManager, PrintPreviewQueue) 

The various IBC classes and their template instantiations are listed below so you can 
more easily identify IBC objects in your application’s generated code. The template 
generated objects are also listed beside the class name in the Quick Reference section 
of this chapter. 

 Internet Builder Class  Template Generated Object 
 BrokerClass   Broker 

HtmlClass   HtmlManager 
JslEventsClass   JavaEvents 
TextOutputClass  Target 
HttpClass   Broker.Http 
WebFilesClass   WebFilesManager, Broker.Files,   

     HtmlManager.Files,     
     Broker.Http.Files,     
     JavaEvents.Files, WebServer.Files,   
     WebWindow.Files, andTarget.Files 

WebServerClass  WebServer 
WebClientManagerClass Broker.CurClient 
WebFrameClass  MainFrame and IC:CurFrame 
WebWindowClass  WebWindow 
WebControlClass  IC:CurControl 
WebCaptionClass  WebCaption 
WebClientAreaClass  WebClientArea 
WebMenubarClass  WebMenubar 
WebToolbarClass  WebToolbar 
WebReportClass  HtmlPreview 



IBC Library Quick Reference 235

Quick Reference 
 
BrokerClass (Broker) 
 
Init (initialize the BrokerClass object) 
Kill (shut down the BrokerClass object) 
ServerName (server identifier) 
 
WebClientManagerClass (Broker.CurClient) 
IP (client IP address) 
 
HtmlClass (HtmlManager) 
 
Init (initialize the HtmlClass object) 
Kill (shut down the HtmlClass object) 
 
JslEventsClass (JavaEvents) 
 
Init (initialize the JslEventsClass object) 
Kill (shut down the JslEventsClass object) 
 
TextOutputClass (HtmlManager or Target) 
 
Writeln (write one line of text) 
 
HttpClass (Broker.Http) 
 
GetCookie (get cookie from client) 
SetCookie (get cookie from client) 
SetProcName (set protected area name) 
SetProgName (set server name) 
 
WebFilesClass (WebFilesManager or Files) 
 
GetAlias (return HTML alias for file) 
Init (initialize the WebFilesClass object) 
Kill (shut down the WebFilesClass object) 
SelectTarget (set public or secure channel) 



Internet Application Guide 236

WebServerClass (WebServer) 
 
Active (Web mode or Windows mode) 
CommandLine (command line parameters) 
Connect (open communication channel to Broker) 
Init (initialize the WebServerClass object) 
JavaLibraryPath (Java Support Library location) 
Kill (shut down the WebServerClass object) 
PageToReturnTo (return URL) 
ProgramName (Server pathname) 
Quit (shut down the server program) 
SetSendWholePage (force full page refresh) 
SetNewPageDisable (suppress outgoing Web pages) 
TimeOut (period of inactivity after which to shut down) 
 
WebFrameClass (MainFrame or IC:CurFrame) 
 
CopyControlsToWindow (merge global controls to local window) 
FrameWindow (reference to APPLICATION) 
TakeEvent (handle browser and ACCEPT loop events) 
 
WebWindowBaseClass (WebWindow) 
AllowJava (generate or suppress JavaScript) 
BorderWidth (Web page border width) 
CloseImage (close button graphic) 
CreateCaption (include a titlebar on the Web page) 
CreateClose (include a close button on the Web page) 
DisabledAction (default HTML for disabled controls) 
FormatBorderWidth (HTML table cell border width) 
GroupBorderWidth (group box border width) 
MenubarType (menu placement) 
OptionBorderWidth (option box border width) 
SheetBorderWidth (sheet border width) 



IBC Library Quick Reference 237

WebWindowClass (WebWindow) 
 
AuthorizeArea (name of password protected Web page) 
HelpDocument (HTML help document) 
HelpEnabled (HTML help enabled flag) 
HelpRelative (remote or local help document) 
IsSecure (public or secure channel) 
AddControl (add control information) 
CreateHtmlPage (generate HTML for a window) 
GetControlInfo (return control reference) 
GetToolbarMode (return toolbar entity) 
Init (initialize the WebWindowClass object) 
Kill (shut down the WebWindowClass object) 
MenubarType (menu placement) 
SetBackground (set Web page background) 
SetFormatOptions (set Web page scale and alignment) 
SetHelpDocument (enable single document Web page help) 
SetHelpURL (enable multiple document Web page help) 
SetPageBackground (set Web page background) 
SetPassword (require password) 
SetSplash (make this a splash window) 
SetTimer (set Web page timer and action) 
SuppressControl (omit control from Web page) 
TakeEvent (handle browser and ACCEPT loop events) 
ValidatePassword (verify password) 
 
WebControlClass (IC:CurControl) 
 
DisabledAction (HTML for disabled control) 
CreateHtml (write HTML for control and its attributes) 
Feq (control number) 
ParentFeq (parent control number) 
Init (initialize the WebControlClass object) 
Kill (shut down the WebControlClass object) 
SetBorderWidth (set BorderWidth) 
 
WebJavaStringClass (IC:CurControl) 
SetAutoSpotLink (set live hypertext links) 
 
WebHtmlImageClass (IC:CurControl) 
SetDescription (set alternative text for Web image) 
 
WebJavaListClass (IC:CurControl) 
ResetFromQueue (record changes to Server LIST queue) 
SetAutoSpotLink (set live hypertext links) 
SetEventAction (associate browser action with control event) 
SetQueue (set the data source queue) 



Internet Application Guide 238

WebCaptionClass (WebCaption) 
Alignment (text justification) 
SetBackground (set Web page caption background) 
SetFont (set Web page caption font) 
 
WebClientAreaClass (WebClientArea) 
SetBackground (set Web page client area background) 
 
WebMenubarClass (WebMenuBar) 
SetBackground (set Web page menu area background) 
 
WebToolbarClass (WebToolbar) 
SetBackground (set Web page toolbar area background) 
 
WebReportClass (HtmlPreview) 
Init (initialize the WebReportClass object) 
Kill (shut down the WebReportClass object) 
Preview (generate HTML to represent the report) 

 

 

 



Glossary and Index 239

Glossary 
All definitions are general terms, except where otherwise indicated. The context for definitions 
marked (Clarion) pertain specifically to the Clarion language or the Clarion development 
environment. 

applet A small, single purpose application; applets are not necessarily stand 
alone executable programs. Small programs written in Java are 
commonly called applets. In HTML, the <APPLET> tag indicates a Java 
applet. 

Application Broker (Clarion) An Application Broker is required to run Clarion hybrid 
Web/Windows applications. The Application Broker launches a hybrid 
Web/Windows application on the Internet server and refreshes the 
Clarion Java Support Library (JSL) on the browser. The Application 
Broker then organizes the message traffic into a remote computing 
session, routing events produced by the Java Support Library to the 
hybrid Web/Windows application and routing HTML scripts produced by 
the application to the browser. 

Broker   (Clarion) See Application Broker. 

Client (Clarion) An internet browser that launches a hybrid Web/Windows 
application with the Application Broker. 

Cookie   Information stored on a client machine at the request of a server. 

default button A command button which is activated by default when the user presses 
the ENTER key. 

Disabled  A window, menu, or control visible but prevented from gaining focus. 

Encryption The representation of data in scrambled or encrypted form, such that an 
unauthorized user may not access the data in an intelligible format. 

font The family name of related type face files. For example, “Times New 
Roman” is the font name, and “Times New Roman plain,” “Times New 
Roman Italic,” “Times New Roman Bold,” and “Times New Roman Bold 
Italic” are the styles, which are stored in separate files. 

font style Character formatting applied to a font face, such as bold, italic, or bold 
italic. 



Internet Application Guide 240

GIF image Graphics Interchange File (GIF) format; an image format popularized by 
CompuServe. Generally acknowledged to offer the best compression 
ration for 256 color or less images. Attention: should you utilize the word 
“GIF” anywhere within an application or program, you must add a 
trademark notice: “GIF (Graphics Interchange Format) is a trademark of 
CompuServe Information Services.” 

global toolbar A horizontal or vertically arranged group of command buttons, and/or 
other controls, generally remaining accessible the entire time a program 
executes. 

Hide Prevent a control or window from displaying on screen; the control exists 
but is not seen by the end user. 

HTML Hyper-Text Markup Language—the language internet browsers use to 
format and display Web pages. 

HTTP Hyper-Text Transfer Protocol—the symbols that internet browsers and 
servers use to transmit and receive HTML. 

Hybrid Web/Windows Application 
 Hybrid Web/Windows Applications look like standard Windows 

applications when launched under Windows, but work as Internet servers 
when launched by the Clarion Application Broker. Hybrid Web/Windows 
applications can then be manipulated from any Java enabled browser 
such as Microsoft Internet Explorer or Netscape Navigator. 

icon A graphical representation of a physical object in the system, such as a 
printer. Also, any small image representing an action, concept or 
program, as when an icon appears on a command button. The normal 
icon file format carries the .ICO extension; one of its main features is 
built-in support for transparency. This enables you to display a small 
picture without obliterating the background. 

include file An external source file read and preprocessed at compile time. In 
Clarion, the Equates and other files in the LIBSRC subdirectory are the 
default include files.  

Internet Developer’s Kit 

(Clarion) The Internet Developer’s Kit is an accessory product that can 
be used with the Clarion Standard, Professional, or Enterprise Editions to 
develop new hybrid Web/Windows Applications or to Web-enable 
existing Clarion applications. A  Developer Version of the Application 
Broker which permits as many as five connections is included with the 
Internet Developer’s Kit. 



Glossary and Index 241

Java Support Library (Clarion) The Java Support Library (JSL) is a small set of Java classes 
(less than 200k) that implement a wide variey of Windows-like controls in 
an Internet Browser. The JSL generates events from the internet browser 
and processes messages from the internet server.  

JPG image A true-color graphics file format featuring 24-bit color storage. It usually 
provides for adjustable loss compression, which allows for greater 
compression but loss of some resolution. 

JSL data The protocol and data a hybrid Web/Windows application sends to the 
internet browser for processing by the Java Support Library (JSL). The 
hybrid Web/Windows application sends JSL data to the internet browser 
to accomplish very fast partial Web page updates. 

Remote Computing Session 
 (Clarion) The Clarion Application Broker organizes events produced by 

the Java Support Library (JSL) and HTML pages produced by hybrid 
Web/Windows applications into a remote computing session by 
maintaining the status of the dialog between the browser and server. 

Reusable Client 
(Clarion) The Java Support Library (JSL) is a small set of Java classes 
(less than 200K) that generates events from the internet browser and 
processes messages from the internet server. This thin client is reused 
by every Clarion hybrid Web/Windows application, thereby minimizing 
connect time and local browser resource requirements (disk space and 
RAM). 

Server (Clarion) A hybrid Web/Windows application launched by the Application 
Broker at the request of an internet browser. 

Session Router (Clarion) The Session Router distributes remote computing sessions to 
multiple Application Brokers over the Internet, when high popularity or 
demand requires the deployment of additional Internet servers. The 
Session Router is available separately. 

timer A Windows resource which can automatically send a message to an 
application at pre-defined intervals. 

Ultra-thin Reusable Client 
(Clarion) The Java Support Library (JSL) is a small set of Java classes 
(less than 200K) that generates events from the internet browser and 
processes messages from the internet server. This thin client is reused 
by every Clarion hybrid Web/Windows application, thereby minimizing 
connect time and local browser resource requirements (disk space and 
RAM). 

 



Internet Application Guide 242

 

 

 



Glossary and Index 243

Index: 
Adding conditional HTML........................ 159 
AddServerProperty Code Template.......... 53 
applet....................................................... 237 
Application Broker ............................. 28, 237 
Background Color ................................... 142 
Background Image .................................. 142 
bandwidth ................................................ 138 
Box.htm ..................................................... 87 
Broker...................................................... 237 
Button.htm................................................. 88 
Centering................................................. 164 
Check.htm ................................................. 90 
Clarion.CAB............................................. 162 
Clarion.ZIP .............................................. 162 
Classes.................................................... 181 
Classes Tab .............................................. 35 
Client ....................................................... 237 
Combo.htm................................................ 92 
control overrides...................................... 193 
cookie ................................................ 33, 237 
Cookies ..................................................... 52 
default button........................................... 237 
DeleteVisitorProcess................................. 69 
Detail.htm .................................................. 92 
disabled ................................................... 237 
dynamic HTML .......................................... 50 
Dynamic HTML ....................................... 157 
Dynamic HTML code template.................. 26 
Dynamic HTML Code Template................ 50 
email.......................................................... 24 
Email String............................................... 79 
Email.String.htm........................................ 92 
encryption................................................ 237 
Entry.htm................................................... 92 
Events ....................................................... 40 
example web-enabled application............. 15 
font .......................................................... 237 
font style .................................................. 237 
Full Refresh............................................. 138 
GetCookie Code Template........................ 51 
GetServerProperty Code Template .......... 53 
GIF image................................................ 238 
global extension ........................................ 16 
Global Internet Application Extension ..... 175 
Global Objects........................................... 34 

global toolbar ...........................................238 
Grid.htm.....................................................94 
Group.htm..................................................95 
Header file ...............................................185 
hide..........................................................238 
Hotstring.htm .............................................97 
HTML.................................................39, 238 
HTTP .......................................................238 
Hybrid Web/Windows Application ...........238 
Hyperlink String .........................................79 
Hyperlink String with verbose text .............80 
IC:CurControl.DisabledAction .................193 
icon ..........................................................238 
Image.htm..................................................97 
Implementation file ..................................185 
include file................................................238 
Internet Application Extension Template.142 
Internet Connect..........................................7 
Internet Developer’s Kit (Clarion) ............238 
Internet Procedure Extension Template..139 
Item.htm.....................................................98 
Java Button..............................................163 
Java Support Library ...............................162 
Java Support Library (Clarion) ................239 
JPG image...............................................239 
JSL data ..................................................239 
List.htm ......................................................98 
login window............................................152 
MDI Settings ..............................................31 
Menu.htm...................................................98 
Menubar.htm ...........................................100 
META Tags................................................77 
Panel.htm ................................................101 
Partial Refresh.........................................138 
password protection ................................168 
Prompt.htm..............................................102 
Property .....................................................41 
Query.htm................................................102 
Radio.htm ................................................103 
RedirectToPage Code Template...............54 
Refresh when changed .............................40 
Region.htm ..............................................104 
Remote Computing Session....................239 
Reusable Client (Clarion) ........................239 
Script.htm ..................................................86 



Internet Application Guide 244

Secure Socket Layer............................... 191 
SELF.FILES.GETAlias ............................ 211 
SELF.FILES.GetAlias() ........................... 220 
Server...................................................... 239 
Session Router........................................ 239 
SetCookie................................................ 154 
SetCookie Code Template ........................ 51 
Sheet.all.htm ........................................... 105 
Sheet.one.htm......................................... 105 
Sheet.two.htm ......................................... 105 
skeleton ..................................................... 23 
skeletons ................................................... 81 
Skeletons............................................. 36, 71 
Spin.htm .................................................. 105 
Splash.htm .............................................. 107 
Sstring.htm .............................................. 108 
Static HTML............................................. 158 
Static HTML Code Template..................... 50 
StaticHTML code template........................ 27 
String.htm................................................ 108 
Tab.all.htm............................................... 108 
Tab.one.htm ............................................ 108 
Table.htm ................................................ 111 
Target.WriteLn................................... 50, 203 
templates................................................. 175 
Text.htm .................................................. 114 
timer ........................................................ 239 
Toolbar.htm ............................................. 115 
TSScript..................................................... 74 
TSSCRIPT 

General .................................................. 77 
Includes ................................................. 76 
Repeats ................................................. 76 

TSSCRIPT....................................... 7, 23, 25 
Basic Structure ...................................... 74 
Patching................................................. 75 

Ultra-thin Reusable Client .......................239 
Using Cookies .........................................152 
Web Application Extension........................29 
Web Procedure Extension.........................36 
WebBuilder ..................................................7 
WebCaption.Alignment ...............................182 
WebCaption.SetBackground ...................182 
WebCaption.SetFont .......................182, 183 
WebClientArea.SetBackground.......185, 199 
Web-enabling a Clarion application ........146 
WebFilesManager.Init .................................180 
WebGridExtension ....................................54 
WebHitManager.........................................55 
WebHitProc extension template ................56 
WebJavaButtonClass ..............................208 
WebMenubar.SetBackground..............183, 198 
WebServer.CommandLine ......................214 
WebServer.Init .......................................... See 
WebServer.JavaClassPath..........................181 
WebServer.PagetoReturnTo........................180 
WebServer.TimeOut ...................................180 
WebShowHits extension ...........................58 
WebToolbar.SetBackground ...................184 
WebWindow.CreateCaption ........................182 
WebWindow.DisabledAction ...................188 
WebWindow.GroupBorderWidth .............179 
WebWindow.OptionBorderWidth..................178 
WebWindow.SetBackground .......................176 
WebWindow.SetHelpDocument ...................177 
WebWindow.SetHelpURL ...........................177 
WebWindow.SetPageBackground........176, 186 
WebWindow.SheetBorderWidth...................178 
Window Settings........................................30 
Window.HTM.............................................82 
Writeln .......................................................21 

 


	Introduction
	What is WebBuilder and Internet Connect?
	Clarion Internet Technologies and the Clarion Development En
	What You’ll Find in this Book
	Where to Find More Information


	Documentation Conventions
	Typeface Conventions
	Keyboard Conventions


	Product Information
	Registering This Product
	Technical Support



	1 - Web-enable an Example Application
	Introduction
	Starting Point


	2 - Web vs Windows Applications
	Introduction
	What is a Skeleton?
	What is TSSCRIPT?
	Dynamic vs. Static HTML
	The Application Broker


	3 - Web Templates
	Web Application Extension
	Web Procedure Extension
	Frame Procedure MDI Options
	Application Menu
	Application Toolbar

	Code Templates
	Dynamic HTML Code Template
	Static HTML Code Template
	GetCookie Code Template
	SetCookie Code Template
	Cookies (Persistent Client Data)
	AddServerProperty Code Template
	GetServerProperty Code Template
	RedirectToPage Code Template
	WebGridExtension
	WebHitManager
	WebHitProc
	WebShowHits
	WebGuardProc Procedure Extenstion
	WebVisitor
	DeleteVisitorProcess


	4 - TSSCRIPT
	Introduction
	Skeletons
	TSScript
	META Tags
	WebStyle Examples

	5 - Skeleton Guide
	Introduction
	Where are the Skeleton files?
	Summary

	6 - Common Questions and Answers
	Introduction
	Common Questions
	How do I set background colors for pages in my application?
	How can I set a default font?
	How can I implement Cascading Style Sheets?
	How can I have an image with text on a button?
	How can I get better control over size & placement of contro
	How can I use meta-tags?
	How can I make a pop-up window for data validation?
	What is the difference between POST and GET and how do I cha
	How can I get server variables and their values?
	How can I create tooltips?
	How can I launch a Clarion application from a link?
	How can I add email capability to my applications?


	7 - Tutorial—Making a Web Application
	Web Application Wizard
	Creating a Hybrid Web/Windows Application
	Deploying the Application
	Faster is Better—Optimizing your Application
	Looks are Important—Adding Graphics


	8 - Tutorial— Web-Enabling an Existing Application
	Using the Global Internet Application Extension Template
	Porting an Application to the Web

	9 - Tutorial— Advanced Web Programming Techniques
	Using Cookies
	Embedding HTML
	Covering the Download with a Splash Window
	Using Partial Refresh to Update Controls
	Restricting Access to a Procedure
	Password Protection

	Restricting Edit-In-Place

	10 - The Internet Builder Class Templates
	The Global Internet Application Extension Template
	Page Settings
	Window Settings
	Help
	Control
	MDI
	Advanced
	Classes

	Global Window Component Options
	Caption
	Menu
	ToolBar
	Client Area
	Class Overrides

	Internet Procedure Extension Template
	Page Settings
	Window Settings
	Help
	Controls
	MDI
	Advanced

	Individual Overrides for a Control
	Display
	HTML
	Events
	Classes

	Procedure Window Component Options
	Caption
	Menu
	Client Area

	Frame Procedure MDI Options
	Application Menu
	Application Toolbar

	Code Templates
	Dynamic HTML Code Template
	Static HTML Code Template
	GetCookie Code Template
	SetCookie Code Template
	Cookies (Persistent Client Data)
	AddServerProperty Code Template
	GetServerProperty Code Template


	11 - Web Application Design Considerations
	Bandwidth Usage Considerations
	Use Partial Refresh whenever possible
	Be frugal with controls
	Use graphics sparingly
	Covering the Download with a Splash Window

	Cosmetic Design Considerations
	Using Groups
	Using Images

	User Interface Design Considerations
	MDI window access
	Restricting Edit-In-Place
	Unsupported Windows Standard Dialogs
	Using Command Line Parameters
	Changing the Class for an individual control
	API calls

	Security Considerations
	Using Passwords

	Using Embedded HTML
	Using references to files in embedded HTML code

	Implementing Help in your Web Application
	Using a Base Document with Mid-Page anchors
	Using individual help Documents

	Windows Controls and their HTML Equivalents
	Hand Coded Applications
	About This Section
	HelloWeb Example Program
	Hand Coded Project Considerations


	12 - IBC Library Quick Reference
	Classes and Their Template Generated Objects
	Quick Reference

	Glossary
	Index

